Site-directed mutagenesis provides a straightforward means of creating specific targets for chemical modifications of proteins. This capability enhanced the applications of spectroscopic methods adapted for addressing specific structural questions such as the characterization of partially folded and transient intermediate structures of globular proteins. Some applications such as the steady state or time-resolved fluorescence resonance energy transfer (FRET) detection of the kinetics of protein folding require relatively large quantities (approximately 10-100 mg) of site-specific doubly labeled protein samples. Engineered cysteine residues are common targets for labeling of proteins. The challenge here is to develop methods for selective modification of one of two reactive sulfhydryl groups in a protein molecule. A general systematic procedure for selective labeling of each of two cysteine residues in a protein molecule was developed, using Escherichia coli adenylate kinase (AKe) as a model protein. Potential sites for insertion of cysteine residues were selected by examination of the crystal structure of the protein. A series of single-cysteine mutants was prepared, and the rates of the reaction of each engineered cysteine residue with a reference reagent [5,5'-dithiobis(2-nitrobenzoic acid) (DTNB)] were determined. Two-cysteine mutants were prepared by selection of pairs of sites for which the ratio of this reaction rate constant was high (>80). The conditions for the selective labeling reaction were optimized. In a first cycle of labeling, the more reactive cysteine residue was labeled with a fluorescent probe (donor). The second probe was attached to the less reactive site under unfolding conditions in the second cycle of labeling. The doubly and singly labeled mutants retained full enzymatic activity and the capacity for a reversible folding-unfolding transition. High yields (70-90%) of the preparation of the pure, site-specific doubly labeled AK mutant were obtained. The procedure described herein is a general outline of procedures, which can meet the double challenge of both site specificity and large-scale preparation of doubly labeled proteins.
A variety of biophysical methods used to study proteins requires protein modification using conjugated molecular probes. Cysteine is the main residue that can be modified without the risk of altering other residues in the protein chain. It is possible to label several cysteines in a protein using highly selective labeling reactions, if the cysteines react at very different rates. The reactivity of a cysteine residue introduced into an exposed surface site depends on the fraction of cysteine in the deprotonated state. Here, it is shown that cysteine reactivity differences can be effectively predicted by an electrostatic model that yields site-specifically the fractions of cysteinate. The model accounts for electrostatic interactions between the cysteinyl anion and side chains, the local protein backbone, and water. The energies of interaction with side chains and the main chain are calculated by using the two different dielectric constants, 40 and 22, respectively. Twenty-six mutants of Escherichia coli adenylate kinase were produced, each containing a single cysteine at the protein surface, and the rates of the reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) were measured. Cysteine residues were chosen on the basis of locations that were expected to allow modification of the protein with minimal risk of perturbing its structure. The reaction rates spanned a range of 6 orders of magnitude. The correlation between predicted fractions of cysteinate and measured reaction rates was strong (R = 92%) and especially high (R = 97%) for cysteines at the helix termini. The approach developed here allows reasonably fast, automated screening of protein surfaces to identify sites that permit efficient preparations of double- or triple-labeled protein.
Alpha-synuclein is regarded as a presynaptic protein, which may play an important role in neuronal plasticity. However, the actual physiological function of this protein is not completely clear. Abnormal accumulation of fibrillar alpha-synuclein in Lewy bodies, as well as mutations in the alpha-synuclein gene identified in the familial forms of Parkinson's disease, point to a central role of this protein in the pathophysiology of Lewy body-related disorders. In vivo and in vitro studies showed that overexpression of alpha-synuclein, its aggregation, and interaction with other proteins are the most critical factors affecting the survival of neurons. In Alzheimer's disease, the amount of alpha-synuclein is found to be elevated at synapses, whereas a peptide derived from alpha-synuclein is thought to represent an intrinsic component of amyloid plaques. It is likely that in this disorder alpha-synuclein plays a dual role by being involved not only in synaptic function but also in amyloid beta-fibrillogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.