Light is shed upon Eulerian Monte Carlo methods and their application to the simulation of turbulent reactive flows. A rapid decorrelating velocity-field model is used to derive stochastic partial differential equations (SPDE's) stochastically equivalent to the modeled one-point joint probability density function of turbulent reactive scalars. Those SPDE's are shown to be hyperbolic, advection-reaction equations. They are dealt with in a generalized sense, so that discontinuities in the scalar fields can be treated. A numerical analysis is proposed and numerical tests are carried out. In particular, a comparison with the Lagrangian Monte Carlo method is performed.
When a premixed flame propagates in a turbulent flow, not only does turbulence affect the burning rate (e.g., by wrinkling the flame and increasing its surface area), but also the heat release in the flame perturbs the pressure field, and these pressure perturbations affect the turbulent flow and scalar transport. For instance, the latter effects manifest themselves in the so-called countergradient turbulent scalar flux, which has been documented in various flames and has challenged the combustion community for approximately 35 years. Over the past decade, substantial progress has been made in investigating (a) the influence of thermal expansion in a premixed flame on the turbulent flow and turbulent scalar transport within the flame brush, as well as (b) the feedback influence of countergradient scalar transport on the turbulent burning rate. The present article reviews recent developments in this field and outlines issues to be solved in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.