We have performed direct measurements of the valence band structures of the light alkaline earth oxides BeO, MgO, and CaO using electron momentum spectroscopy (EMS). From these measurements, we have determined the band dispersions, valence bandwidths, and O(2s)–O(2p) intervalence bandgaps at the Γ point. For comparison we have also performed Hartree–Fock (HF) and density-functional (DFT) calculations in the linear combination of atomic orbitals (LCAO) approximation. Intervalence bandgaps compare reasonably well with the DFT calculations and previous experimental and theoretical studies. Our measured bandwidths, however, are significantly smaller. In particular, we find that contrary to conventional wisdom, the local density approximation of DFT overestimates the valence bandwidths of these ionic solids.
The spectral function A(q,) of silicon has been measured along a number of symmetry directions using high-energy high-resolution electron momentum spectroscopy. It is compared with first-principles calculations based on the interacting one-electron Green's function which is evaluated in the GW and the cumulant expansion approximations. Positions of the quasiparticle peaks ͑dispersion͒, their widths ͑lifetimes͒, and the extensive satellite structures are measured over a broad range of energies and momenta. The band dispersions are well described by both calculations, but the satellite predicted by the GW calculation is not observed. Unlike the GW calculation, the cumulant expansion calculation gives a significantly better description of the shape and momentum dependence of the satellite structure, presenting a promising approach for studying high-energy excitations.
The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 A 0.2 eV and 4.8 A 0.3 eV for the oxygen sand p-bands, respectively, are in accord with theoretical predictions as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the Γ point. The measured full valence bandwidth of 19.4 A 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.
We present measurements of the spectral function of aluminum and lithium using high-energy electron momentum spectroscopy. For aluminum the quasiparticle peaks show clear asymmetries and significant satellite intensity that extends over a wide region to larger binding energies. The intensity distribution is not well described by band structure calculations. These data are described only by calculations based on the manybody cumulant expansion scheme. The measured momentum distribution at the Fermi level agrees with the theoretical one within 0.03 a.u. For lithium a bandwidth of 3.0 eV is obtained.
Electron momentum spectroscopy (EMS) has been used to measure the valence band electronic structure of thin magnesium and magnesium oxide films. The band structures have also been calculated within the linear muffin-tin orbital (LMTO) approximation. The free-electron-like parabola characteristic of metallic solids was observed for magnesium with a bandwidth of approximately 6 eV, in agreement with previous measurements. The inclusion of energy broadening due to finite hole-lifetime effects and a Monte Carlo simulation of multiple scattering events gives good agreement between calculated and measured band structures. However, we measure a much higher intensity due to plasmon excitation compared with the simulated intensity. Upon oxidation the valence structure splits into two distinct, less dispersive bands typical of an ionic solid. Intensity due to plasmon excitation was almost completely absent in the experimental spectra for magnesium oxide. The LMTO calculation reproduces the overall structure and dispersion range of the oxide. The measured and calculated energy gap between upper and lower valence bands and their relative intensities do not agree quantitatively. This discrepancy may be due to a contribution of magnesium s states to the predominantly oxygen p states in the upper band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.