This paper presents a new formulation of the optimal control problem with uncertainty, in which an additive bounded function is considered as uncertainty. The purpose of the control is to ensure the achievement of terminal conditions with the optimal value of the quality functional, while the uncertainty has a limited impact on the change in the value of the functional. The article introduces the concept of feasibility of the mathematical model of the object, which is associated with the contraction property of mappings if we consider the model of the object as a one-parameter mapping. It is shown that this property is sufficient for the development of stable practical systems. To find a solution to the stated problem, which would ensure the feasibility of the system, the synthesized optimal control method is proposed. This article formulates the theoretical foundations of the synthesized optimal control. The method consists in making the control object stable relative to some point in the state space and to control the object by changing the position of the equilibrium points. The article provides evidence that this approach is insensitive to the uncertainties of the mathematical model of the object. An example of the application of the method for optimal control of a group of robots is given. A comparison of the synthesized optimal control method with the direct method on the model without disturbances and with them is presented.
Abstract. Agriculture is the extremely important and developing economic movement in all times. Automation of agricultural machines occurs by different ways. One way is through the creation of specialized technical solutions for the required technological processes, another way is the construction of automatic agricultural machines, including mobile ones. The state of modern technology allows to create autonomous machines. The agriculture robotization trends are the high precision and unmanned farming. The article considers the issues of robotization of agricultural machinery. Stages of robotization of agricultural mobile machines were analyzed. The factors affecting the autonomous movement of mobile agrorobots were shown.
Purpose or research is to find solvable tasks for increasing the effectiveness of collaborative interaction between people and robots in ergatic robotic systems, or, in other words, in collaborative robotic systems. Methods. A comprehensive analysis of works published in highly rated peer-reviewed open-access scientific publications was carried out to achieve this goal. Main terms and concepts of collaborative robotics are described in § 1 and their current understanding in the research community is also described. The structure of workspaces in interaction zone of a person and robot is described. The criteria for assigning robot to the class of collaborative ones are also described. The criteria for safe interaction of a person and robot in a single workspace is described in § 2. Various grounds for classifying human-robot interactions in collaborative RTAs are described in § 3. Results. A significant part of published works about collaborative robotics is devoted to the organization of safe man and robot interaction. Less attention is paid to the effectiveness improvement of such interaction. An up-to-date task in the problem of efficiency improvement of collaborative robotic systems is the identification of tasks that have already been solved in other areas - in particular, in the field of organizational systems management. The possibility of using the term "team" for collaborative robots in a collaborative PTC is stated in § 4. A formal problem setting of optimal distribution in teamwork of collaborative robots, similar to the problem of heterogeneous team formation in the theory of organizational systems management is proposed in § 5. Conclusions. Proposed task setting of optimal distribution of works in collaborative robots’ team shows possibility of using results obtained in group of mathematical models of commands formation and functioning for control of collaborative robotic systems in order to increase efficiency of people and robots interaction. It is prospectively to continue the search for adapting models and governance mechanisms to the theory of organizational system management and integrated activities methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.