This research investigates the problem of robust static resource allocation for distributed computing systems operating under imposed Quality of Service (QoS) constraints. Often, such systems are expected to function in a physical environment replete with uncertainty, which causes the amount of processing required to fluctuate substantially over time. Determining a resource allocation that accounts for this uncertainty in a way that can provide a probabilistic guarantee that a given level of QoS is achieved is an important research problem. The stochastic robustness metric proposed in this research is based on a mathematical model where the relationship between uncertainty in system parameters and its impact on system performance are described stochastically.The utility of the established metric is then exploited in the design of optimization techniques based on greedy and iterative approaches that address the problem of resource allocation in a large class of distributed systems operating on periodically updated data sets. The performance results are presented for a simulated environment that replicates a heterogeneous cluster-based radar data processing center. A mathematical performance lower bound is presented for comparison analysis of the heuristic results. The lower bound is derived based on a relaxation of the Integer Linear Programming formulation for a given resource allocation problem.
Heterogeneous computing (HC) systems composed of interconnected machines with varied computational capabilities often operate in environments where there may be inaccuracies in the estimation of task execution times. Makespan (defined as the completion time for an entire set of tasks) is often the performance feature that needs to be optimized in such systems. Resource allocation is typically performed based on estimates of the computation time of each task on each class of machines. Hence, it is important that makespan be robust against errors in computation time estimates. In this research, the problem of finding a static mapping of tasks to maximize the robustness of makespan against the errors in task execution time estimates given an overall makespan constraint is studied. Two variations of this basic problem are considered: (1) where there is a given, fixed set of machines, (2) where an HC system is to be constructed from a set of machines within a dollar cost constraint. Six heuristic techniques for each of these variations of the problem are presented and evaluated.
Heterogeneous distributed computing systems often must operate in an environment where system parameters are subject to uncertainty. Robustness can be defined as the degree to which a system can function correctly in the presence of parameter values different from those assumed. We present a methodology for quantifying the robustness of resource allocations in a dynamic environment where task execution times are stochastic. The methodology is evaluated through measuring the robustness of three different resource allocation heuristics within the context of a stochastic dynamic environment. A Bayesian regression model is fit to the combined results of the three heuristics to demonstrate the correlation between the stochastic robustness metric and the presented performance metric. The correlation results demonstrated the significant potential of the stochastic robustness metric to predict the relative performance of the three heuristics given a common objective function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.