Developing new technologies is one of the most important goals of today's scientific and industrial research. Understanding how technology evolves, as well as its current state, is invaluable in an ecosystem where technology is evolving at an increasingly rapid pace. In this paper, patent data is used to determine a technology's life cycle. Two patent maps are created, one based on patent citations and one based on keywords. The citation patent map visualizes how patents cite each other, while the keyword patent maps visualize keywords used to describe patents and their relations. Both of these patent maps are dynamic, meaning they change over time thus giving insight into an examined technology's evolution. A growth analysis of both networks is conducted as well as a degree distribution analysis. Both of these analyses are used to help determine the technology's lifecycle phase as well as its patterns of growth. This insight is invaluable to stakeholders tasked to make strategic decisions related to technology development.
Purpose This paper aims to present a methodology by which future knowledge flow can be predicted by predicting co-citations of patents within a technology domain using a link prediction algorithm applied to a co-citation network. Design/methodology/approach Several methods and approaches are used: a dynamic analysis of a patent citation network to identify technology life cycle phases, patent co-citation network mapping from the patent citation network and the application of link prediction algorithms to the patent co-citation network. Findings The results of the presented study indicate that future knowledge flow within a technology domain can be predicted by predicting patent co-citations using the preferential attachment link prediction algorithm. Furthermore, they indicate that the patent – co-citations occurring between the end of the growth life cycle phase and the start of the maturation life cycle phase contribute the most to the precision of the knowledge flow prediction. Finally, it is demonstrated that most of the predicted knowledge flow occurs in a time period closely following the application of the link – prediction algorithm. Practical implications By having insight into future potential co-citations of patents, a firm can leverage its existing patent portfolio or asses the acquisition value of patents or the companies owning them. Originality/value It is demonstrated that the flow of knowledge in patent co-citation networks follows a rich get richer intuition. Moreover, it is show that the knowledge contained in younger patents has a greater chance of being cited again. Finally, it is demonstrated that these co-citations can be predicted in the short term when the preferential attachment algorithm is applied to a patent co-citation network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.