The current economic situation is pushing the oil industry toward higher efficiency and safety, demanding different ways of work. Optimization is an increasingly important issue, which involves technology, sharing of real-time information, collaboration, and the application of multiple expertise across disciplines, organizations, and geographical locations. In this way, companies are introducing Integrated Operations to redesign and optimize many work processes. To address this challenging scenario, Petrobras, the Brazilian oil operator, decided to optimize the collaborative environments of its drilling centers which are critical for well construction, to introduce integration and improve efficiency. This article presents a methodological approach that is applicable across the oil industry, including a survey of drilling centers to document perceptions concerning the key Integrated Operations components: people, process, technology and organization. This approach applied an intensive assessment. The applicability and scalability of this methodology are reinforced by inclusion of statistical analysis of questionnaire responses. The study results were used to implement a unique collaborative environment that has decreased operating time and facilitated future operational improvements. The research pointed to positive impacts on both, the safety and performance aspects. The preliminary results are promising. For an example, it was observed a 7.25% decrease in time required for a casing run.
Over the years, the Exploration and Production (E&P) industry, in order to improve productivity and reduce costs, has sought the use of digital technologies to mitigate the effects of seasonal oil prices, the shortage of professionals, increased competition and to promote safer operations. Today the digital transformation initiativereferred to as the new industrial revolutionhas been driving the use of disruptive technologies and provoking cultural changes, both in society and industry. At the heart of this revolution is the exponential growth and data availability. In this scenario, a change is needed in the way these data are collected, stored, analyzed and accessed to support organizations intelligence and decision-making cycles. This dissertation addresses the process of knowledge discovery in data, through the development of a computational solution with support of the methodology CRISP-DM (Cross Industry Standard process for data Mining) for analysis of anomalies in the process of Drilling of wells in ultra-deep waters. Well drilling is one of the stages that most demand financial resources. Thus, understanding and anticipating problems, evaluating their causes and planning solutions are necessary for global cost control, in order to ensure the well integrity and stability, avoiding non-productive times. This research was delimited to the stuck pipe event and the use of the logistic regression method in the development of the modeling step. The data used were made available by the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP), through a development and innovation research Project (PD&I), containing a set of real data for drilling oil wells of the Pre-salt polygon on the Brazilian coast. At the end of the evaluation process, it was possible to analyze the applicability of the chosen model and the results obtained with the business perspective, that is, that the results are adequate to support the decision-making of the organization. The results obtained to exemplify the model demonstrate an accuracy of 89% with a rate of 99%. Another important result of the work is the contribution to professionals and companies that need to apply methods of data science in similar cases or with other characteristics. Some limitations with low data quality and sample size are also highlighted during the knowledge discovery process. Additionally, programming language codes were included, used for understanding and processing data and generating results. These can serve as an initial version for other analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.