The purpose of this paper is to prove that orbital continuity for a pair of self-mappings is a necessary and sufficient condition for the existence and uniqueness of a common fixed point for these mappings defined on Menger PM-spaces with a nonlinear contractive condition. The main results are obtained using the notion of R-weakly commutativity of type Af (or type Ag). These results generalize some known results.
In this paper we prove existence and uniqueness of a common fixed point for non-self coincidentally commuting mappings with nonlinear, generalized contractive condition defined on strictly convex Menger PM-spaces proved.
Предговор Математичка логика, као део математике и логике уопште, данас представља незаобилазни метод за решавање велике групе математичких проблема. С једне стране, представља средство за прецизно излагање математичких теорија, с друге стране, једну од математичких теорија у чијем оквиру је развијен један број математичких метода које се по природи не разликују битно од метода алгебре, анализе итд., односно, који су по својој природи математички и служе за решавање математичких проблема. С тим у вези, формалне логике заузимају важно место у формализацији многих теорија. Могло би се рећи да проучавање логичких система, у овом раду, иде у два правца: један је у вези са теоријом вероватноће, односно теоријом мере, док је други везан за топологију. Предмет рада је, свакако у првом реду, проширивање класичне логике до формалних система који ће бити прикладни за описивање и закључивање у наведеним математичким окружењима. Место и значај топологије и теорије мере у математици у потпуности оправдавају проучавање везе између фрагмената математичке логике којима ћемо се овде бавити и ових математичких дисциплина.
After the outbreak of the COVID-19 pandemic, higher education insti- tutions all around the world were forced to switch from face-to-face to online and hybrid model of teaching. The issue of the quality of such teaching arose at universities. Given that, even under normal conditions, learning mathematics represents a challenge for stu- dents, we wanted to examine the attitudes and experience of students regarding teaching mathematics in an online environment. The aim of the research was to determine how students of non-mathematical faculties evaluate the quality of mathematics teaching in an online environment at higher education institutions in the Republic of Serbia during the COVID-19 pandemic. The research sample included 224 undergraduate students of seven faculties/departments of three state and one private university. Regardless of the fact that neither teachers nor students were prepared for the organization of online mathematics classes at the time of the COVID-19 pandemic outburst, the obtained research results confirm the good quality of teaching. Students recognize the quality of the organization of online mathematics classes in terms of well-prepared teaching materials in digital forms, as well as of good communication and interaction with teachers. We believe that this re- search can be a significant starting point for some further studies that could examine the connection between attitudes of students about the quality of mathematics teaching and their mathematical achievements. The obtained results can also be used in the context of preparing and planning training of both teachers and students, for the application of new technologies in the teaching process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.