The bimorph deformable mirror with a diameter of 320 mm, including 127 control electrodes, has been developed and tested. The flatness of the initial mirror surface of about 1 μm (P-V) was achieved by mechanically adjusting the mirror substrate fixed in the metal mount. To correct for the aberrations and improve the beam focusing in the petawatt Ti:Sa laser, the wide-aperture adaptive optical system with the deformable mirror and Shack–Hartmann wavefront sensor was developed. Correction of the wavefront aberrations in the 4.2 PW Ti:Sa laser using the adaptive system provided increases the intensity in the focusing plane to a value of 1.1 × 1023 W/cm2
In this work, two advanced technologies were applied for manufacturing a bimorph wavefront corrector: laser ablation, to vaporize conductive silver coating from piezoceramic surface, and parallel-gap resistance microwelding, to provide a reliable electrical contact between the piezodisk surface silver electrodes and copper wires. A step-by-step guide for bimorph mirror production is presented, together with the ‘bottlenecks’. Optimization of the laser ablation technique was carried out using an Nd:YAG laser with an output power of 4 W and a frequency of 20 kHz. A comparison of the ultrasonic welding and parallel-gap resistance microwelding methods was performed. The tensile strength in the first case was in the range of 0.2…0.25 N for the system ‘copper wire–silver coating’. The use of resistance welding made it possible to increase the value of this parameter for the same contact pair by almost two times (0.45…0.5 N).
This paper presents a FPGA-based closed-loop adaptive optical system with a bimorph deformable mirror for correction of the phase perturbation caused by artificial turbulence. The system’s operating frequency of about 2000 Hz is, in many cases, sufficient to provide the real-time mode. The results of the correction of the wavefront of laser radiation distorted by the airflow formed in the laboratory conditions with the help of a fan heater are presented. For detailed consideration, the expansion of the wavefront by Zernike polynomials is used with further statistical analysis based on the discrete Fourier transform. The result of the work is an estimation of the correction efficiency of the wavefront distorted by the turbulent phase fluctuations. The ability of the bimorph adaptive mirror to correct for certain aberrations is also determined. As a result, it was concluded that the adaptive bimorph mirrors, together with a fast adaptive optical system based on FPGA, can be used to compensate wavefront distortions caused by atmospheric turbulence in the real-time mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.