We study the problem of optimal preparation of a bipartite entangled state, which remains entangled the longest time under action of local qubit noises. We show that for unital noises such a state is always maximally entangled, whereas for nonunital noises, it is not. We develop a decomposition technique relating nonunital and unital qubit channels, based on which we find the explicit form of the ultimately robust state for general local noises. We illustrate our findings by amplitude damping processes at finite temperature, for which the ultimately robust state remains entangled up to two times longer than conventional maximally entangled states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.