Presynaptic calcium (Ca(pre)) has been studied extensively because of its role in triggering and modulating neurotransmitter release. Although calcium regulation and calcium-driven processes can be strongly temperature dependent, technical difficulties have limited most studies of Ca(pre) to temperatures well below the physiological range. Here we assessed the use of membrane-permeant acetoxymethyl (AM) indicators and dextran-conjugated indicators for measuring Ca(pre) at physiological temperatures. A comparison of these two types of indicators loaded into parallel fibers of rat cerebellar slices revealed striking differences. AM indicators were rapidly extruded from axons and presynaptic terminals and therefore cannot be used for long-term measurements at high temperatures. In contrast, dextran-conjugated indicators were retained within parallel fibers and are therefore well suited to measuring Ca(pre) at physiological temperatures. The limited number of dextran indicators available prompted us to synthesize three new indicators that show peak emission in the red (575-600 nm). These indicators allow for simultaneous use of multiple calcium indicators that can be readily distinguished on the basis of excitation and emission wavelengths, use of excitation and emission wavelengths that are relatively insensitive to tissue autofluorescence, and measurements in systems with expression of green fluorescent protein (GFP). Thus we find that dextran-conjugated indicators are well suited to long-term recordings of Ca(pre) at physiological temperatures and that the development of new red indicators greatly extends their utility.
A new series of gadolinium chelates designed as blood pool contrast enhancing agents for magnetic resonance imaging applications is described. Complexes having four Gd(III) chelate units display a significant increase in molecular relaxivity per gadolinium ion in water (9-13 L x mmol(-1) x (s-1) compared to Gd(III)-DTPA (5 L x mmol(-1) x s(-1). A further jump in relaxivity (25 L x mmol(-1) x sec(-1) in 4% BSA solution was observed in the case of a fatty acid-containing tetrachelate and is attributed to noncovalent binding of the tetrachelate to serum albumin. This agent was successfully used for imaging the rat circulatory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.