The lesser white-fronted goose is a sub-Arctic species with a currently fragmented breeding range, which extends from Fennoscandia to easternmost Siberia. The population started to decline at the beginning of the last century and, with a current world population estimate of 25,000 individuals, it is the most threatened of the Palearctic goose species. Of these, only 30-50 pairs breed in Fennoscandia. A fragment of the control region of mtDNA was sequenced from 110 individuals from four breeding, one staging and two wintering areas to study geographic subdivisions and gene flow. Sequences defined 15 mtDNA haplotypes that were assigned to two mtDNA lineages. Both the mtDNA lineages were found from all sampled localities indicating a common ancestry and/or some level of gene flow. Analyses of molecular variance showed significant structuring among populations (/ ST 0.220, P < 0.001). The results presented here together with ecological data indicate that the lesser white-fronted goose is fragmented into three distinctive subpopulations, and thus, the conservation status of the species should be reconsidered.
SummaryDeclines in populations of the Critically Endangered Spoon-billed Sandpiper Calidris pygmaeus have been rapid, with the breeding population now perhaps numbering fewer than 120 pairs. The reasons for this decline remain unresolved. Whilst there is evidence that hunting in wintering areas is an important factor, loss of suitable habitat on passage and wintering areas is also of concern. While some key sites for the species are already documented, many of their wintering locations are described here for the first time. Their wintering range primarily stretches from Bangladesh to China. Comprehensive surveys of potential Spoon-billed Sandpiper wintering sites from 2005 to 2013 showed a wide distribution with three key concentrations in Myanmar and Bangladesh, but also regular sites in China, Vietnam and Thailand. The identification of all important nonbreeding sites remains of high priority for the conservation of the species. Here, we present the results of field surveys of wintering Spoon-billed Sandpipers that took place in six countries between 2005 and 2013 and present species distribution models which map the potential wintering areas. These include known and currently unrecognised wintering locations. Our maximum entropy model did not identify any new extensive candidate areas within the winter distribution, suggesting that most key sites are already known, but it did identify small sites on the coast of eastern Bangladesh, western Myanmar, and the Guangxi and Guangdong regions of China that may merit further investigation. As no extensive areas of new potential habitat were identified, we suggest that the priorities for the conservation of this species are habitat protection in important wintering and passage areas and reducing hunting pressure on birds at these sites.
Populations from different parts of a species range may vary in their genetic structure, variation and dynamics. Geographically isolated populations or those located at the periphery of the range may differ from those located in the core of the range. Such peripheral populations may harbour genetic variation important for the adaptive potential of the species. We studied the distribution-wide population genetic structure of the Terek Sandpiper Xenus cinereus using 13 microsatellite loci and the mitochondrial DNA (mtDNA) control region. In addition, we estimated whether genetic variation changes from the core towards the edge of the breeding range. We used the results to evaluate the management needs of the sampled populations. Distribution-wide genetic structure was negligible; the only population that showed significant genetic differentiation was the geographically isolated Dnieper River basin population in Eastern Europe. The genetic variation of microsatellites decreased towards the edge of the distribution, supporting the abundant-centre hypotheses in which the core area of the distribution preserves the most genetic variation; however, no such trend could be seen with mtDNA. Overall genetic variation was low and there were signs of past population contractions followed by expansion; this pattern is found in most northern waders. The current effective population size (N e ) is large, and therefore global conservation measures are not necessary. However, the marginal Dnieper River population needs to be considered its † Equal contributors.
THE GYRFALCON (FALCO RUSTICOLUS) is the earliest breeding raptor species in the Arctic. Its breeding season starts under winter conditions while the tundra is covered with deep snow, and hard frosts and snowstorms occur regularly. Willow Ptarmigan (Lagopus lagopus) is the only food available to Gyrfalcons at that time in the tundra of European Russia. It appears that Gyrfalcons depend on Willow Ptarmigan at this crucial time of the breeding cycle, and therefore, the abundance of ptarmigan available to Gyrfalcons as they begin breeding may be a crucial factor affecting the falcon's breeding success, and perhaps determines the Gyrfalcon's distribution in the Arctic. The aim of my study was to clarify if these hypotheses are true and to identify any other factors that may be significant for breeding of Gyrfalcons in the Russian Arctic. STUDY AREAS The study areas were located in the northeast of European Russia, the south of Yamal Peninsula (Western Siberia), in forest-tundra, mainland lowland tundra, mountain tundra of the Polar Urals, and islands in the Arctic Ocean of the Russian Arctic and Subarctic (Figure 1).
The purpose of the data paper was to introduce into scientific literature the results of scientific work carried out for the third edition of the 'Red Data Book of the Komi Republic'. The article reflects methodological approaches to the formation of a list of rare and in need of protection species and describes the corresponding datasets published in GBIF. Information about 7,187 occurrences of 438 rare species and infraspecies included in the third edition of the 'Red Data Book of the Komi Republic' have been published.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.