The mixed-state resistive response of a superconductor thin film with an asymmetric washboard pinning potential subject to superimposed dc and ac currents of arbitrary amplitudes and frequency at finite temperature is theoretically investigated. The problem is considered in the single-vortex approximation, relying upon the exact solution of the Langevin equation in terms of a matrix continued fraction. The dc voltage response and the absorbed power in ac response are analyzed as functions of dc bias and ac current amplitude and frequency in a wide range of corresponding dimensionless parameters. Predictions are made of (i) a reversal of the rectified voltage at small dc biases and strong ac drives and (ii) a non-monotonic enhancement of the absorbed power in the nonlinear ac response at far sub-depinning frequencies. It is elucidated how and why both these effects appear due to the competition of the fixed internal and the tunable, dc bias-induced external asymmetry of the potential as the only reason. This is distinct from other scenarios used for explaining the vortex ratchet reversal effect so far.
Two-dimensional vortex dynamics in a ratchet washboard planar pinning potential (PPP) in the presence of thermal fluctuations is considered on the basis of a Fokker-Planck equation. Explicit expressions for two new nonlinear anisotropic voltages (longitudinal and transverse with respect to the current direction) are derived and analyzed. The physical origin of these odd (with respect to magnetic field or transport current direction reversal) voltages is caused by the interplay between the even effect of vortex guiding and the ratchet asymmetry. Both new voltages are going to zero in the linear regimes of the vortex motion ( i.e. in the thermally activated flux flow (TAFF) and ohmic flux flow (FF) regimes) and have a bump-like current or temperature dependence in the vicinity of the highly nonlinear resistive transition from the TAFF to the FF.
The coherent nonlinear dynamics of Abrikosov vortices in asymmetric pinning nanolandscapes is studied by theoretical modeling and combined microwave and dc electrical resistance measurements. The problem is considered on the basis of a single-vortex Langevin equation within the framework of a stochastic model of anisotropic pinning. When the distance over which Abrikosov vortices are driven during one half ac cycle coincides with one or a multiple of the nanostructure period, Shapiro steps appear in the current-voltage curves (CVCs) as a general feature of systems whose evolution in time can be described in terms of a particle moving in a periodic potential under combined dc and ac stimuli. While a dc voltage appears in response to the ac drive, the addition of a dc bias allows one to diminish the rectified voltage and eventually to change its sign when the extrinsic dc bias-induced asymmetry of the pinning potential starts to dominate the intrinsic one. This rectified negative voltage in the CVCs becomes apparent as zero-bias Shapiro steps, which are theoretically predicted and experimentally observed for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.