A big amount of solid wastes or dump sludges is generated after leaching vanadium (V) from a roasted mixture. As the vanadium content in these tailings is comparable to its concentration in traditional vanadium sources such as titanomagnetite ores or a vanadium converter slag, these wastes could be recycled to extract additional vanadium. Therefore, this research was aimed on studies of vanadium-containing sludges resulting from hydrometallurgical production of vanadium pentoxide to find an optimal technology for V extraction. The material composition of industrial and synthetic sludge samples was studied by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), secondary ions mass spectroscopy (SIMS), and X-ray photoelectron spectroscopy (XPS, ESCA). The paper demonstrates the presence of vanadium in sludges, not only in spinels in 3+ oxidation degree, but also in other compounds containing V4+ and V5+. It was found that vanadium substitutes a set of elements in minerals except spinel. The dependence between the content of insoluble vanadium compounds and V oxidation degree was determined.
Plasmon resonance heterogeneities were identified and studied along Ag and TiAlN layers within a multilayer stack in nanolaminate TiAlN/Ag coatings. For this purpose, a high-resolution plasmon microscopy was used. The plasmons intensity, energy, and depth of interface plasmon-polariton penetration were studied by scanning reflected electron energy loss spectroscopy. The heat conductivity of such metal-insulator-metal (MIM) nanolaminate coatings was measured by laser reflectometry. Dependencies of thermal conductivity coefficient of coatings, MIM interfaces, and resistivity of Ag layers as a function of the Ag-TiAlN bilayer thickness were calculated on the basis of experimental data. The contribution of plasmon resonance confinement to the abnormal lower thermal conductivity in the MIM metamaterial with Ag layer thickness below 25 nm is discussed. In particular, the results highlight the relevant role of different heat transfer mechanisms between MI and IM interfaces: asymmetry of plasmon-polariton interactions on upper and lower boundaries of Ag layer and asymmetry of LA and TA phonons propagation through interfaces.
Thermal radiation from animal coats: coat structure and measurements of radiative temperature K Cena and J A Clark IntroductionModern antireflection optical coatings are designed as combinations of dielectrics and metal thin layers. Metal layers are acting through the bulk reflectance and absorption properties of the material. Dielectric thin films are using optical interference. The reflectance and transmittance in these coatings are achieved due to pumping of plasmon oscillations in the multilayer coating by impinging light. Excitation of plasmons at optical frequencies and coupling them back into freely propagating light are processes of great interest for the manipulation with transmitted and reflected light. Plasmonics involving manipulation of bulk and surface plasmon resonance in a metal allows changing the wavelength and intensity of electromagnetic radiation at its absorption and reemission. These processes are occurring in the metal-dielectric metamaterials with dimensions of structural elements comparable with electromagnetic wavelength. Multilayer designs can deliver higher performance and enable operation over a wider range of wavelengths filtering and focusing electromagnetic waves. Physical properties and electronic structure of a metal and a dielectric in the nanocomposite are controlling energy and intensity of free electrons resonance as well as electromagnetic field localization on interfaces.
Metallurgical vanadium-containing converter slag could be used as an alternative vanadium source. The development of a physico-chemical basis for the comprehensive processing of industrial vanadium-containing debris requires information about their elemental composition as well as the oxidation degrees of the elements and forms of compounds in order to solve two key problems: a better utilization of industrial wastes and a lowering of environment impact. This research was aimed at the development of methods to determine the fractions of elements and their oxidation degrees in vanadium-containing industrial debris exemplified by basic oxygen converter vanadium slags. A set of bulk and surface analysis methods (X-ray fluorescence analysis (XRF), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS)) was used for this purpose: based on results of elemental analysis, SEM detects the oxide phases of metals, while an analysis of the XPS lines’ fine structures provides fractions of corresponding elements with definite oxidation degrees. In this way, one can determine the fractions of vanadium in multiple oxidation degrees in slags and can properly select the chemicals and parameters of chemical processes for its fullest extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.