Biodiversity encompasses the complex variety of life at all scales, ranging from genes to species to ecosystems. It encapsulates the structure, function, distribution, traits and composition of all living things. Crisis-level losses of biodiversity are stimulating action from local to global scales, as evidenced by establishment of the United Nations Sustainable Development Goals (SDGs) and Aichi targets and the current post-2020 negotiation of the Convention on Biological Diversity (CBD), as well as the first round of risk assessments by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 1 . In response to these losses of biodiversity, the Group on Earth Observations Biodiversity Observation Network (GEO BON) 2,3 proposes a common framework of essential biodiversity variables (EBVs) 4 for monitoring biodiversity. These EBVs form a core set of complementary biological measurements for capturing considerable biodiversity change and are produced by
Woodlands and savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to subsistence and intensive agriculture or urbanized. This study investigates changes in land cover over four administrative regions of North Eastern Namibia within the Kalahari woodland savannah biome, covering a total of 107,994 km 2 . Land cover is mapped using multi-sensor Landsat imagery at decadal intervals from 1975 to 2014, with a post-classification change detection method. The dominant change observed was a reduction in the area of woodland savannah due to the expansion of agriculture, primarily in the form of small-scale cereal and pastoral production. More specifically, woodland savannah area decreased from 90% of the study area in 1975 to 83% in 2004, and then increased to 86% in 2014, while agricultural land increased from 6% to 12% between 1975 and 2014. We assess land cover changes in relation to towns, villages, rivers and roads and find most changes occurred in proximity to these. In addition, we find that most land cover changes occur within land designated as communally held, followed by state protected land. With widespread changes occurring across the African continent, this study provides important data for understanding drivers of change in the region and their impacts on the distribution of woodland savannahs.
Shorebirds have declined severely across the East Asian-Australasian Flyway. Many species rely on intertidal habitats for foraging, yet the distribution and conservation status of these habitats across Australia remain poorly understood. Here, we utilised freely available satellite imagery to produce the first map of intertidal habitats across Australia. We estimated a minimum intertidal area of 9856 km 2 , with Queensland and Western Australia supporting the largest areas. Thirty-nine percent of intertidal habitats were protected in Australia, with some primarily within marine protected areas (e.g. Queensland) and others within terrestrial protected areas (e.g. Victoria). Three percent of all intertidal habitats were protected by both marine and terrestrial protected areas. To achieve conservation targets, protected area boundaries must align more accurately with intertidal habitats. Shorebirds use intertidal areas to forage and supratidal areas to roost, so a coordinated management approach is required to account for movement of birds between terrestrial and marine habitats. Ultimately, shorebird declines are occurring despite high levels of habitat protection in Australia. There is a need for a concerted effort both nationally and internationally to map and understand how intertidal habitats are changing, and how habitat conservation can be implemented more effectively.
Maps that accurately quantify aboveground vegetation biomass (AGB) are essential for ecosystem monitoring and conservation. Throughout Namibia, four vegetation change processes are widespread, namely, deforestation, woodland degradation, the encroachment of the herbaceous and grassy layers by woody strata (woody thickening), and woodland regrowth. All of these vegetation change processes affect a range of key ecosystem services, yet their spatial and temporal dynamics and contributions to AGB change remain poorly understood. This study quantifies AGB associated with the different vegetation change processes over an eight-year period, for a region of Kalahari woodland savannah in northern Namibia. Using data from 101 forest inventory plots assessed and validated using independent data, and changes in AGB for the main vegetation processes are quantified for the whole study area (75,501 km 2 ). We find that woodland degradation and woody thickening contributed a change in AGB of -14.3 Tg and 2.5 Tg over 14% and 3.5% of the study area, respectively. Deforestation and regrowth contributed a smaller portion of AGB change, i.e. -1.9 Tg and 0.2 Tg over 1.3% and 0.2% of the study area, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.