Previous studies showed a poor correlation between sarcolemmal K+ currents and cardioprotection for ATP-sensitive K+ channel (KATP) openers. Diazoxide is a weak cardiac sarcolemmal KATP opener, but it is a potent opener of mitochondrial KATP, making it a useful tool for determining the importance of this mitochondrial site. In reconstituted bovine heart KATP, diazoxide opened mitochondrial KATP with a K1/2 of 0.8 mumol/L while being 1000-fold less potent at opening sarcolemmal KATP. To compare cardioprotective potency, diazoxide or cromakalim was given to isolated rat hearts subjected to 25 minutes of global ischemia and 30 minutes of reperfusion. Diazoxide and cromakalim increased the time to onset of contracture with a similar potency (EC25, 11.0 and 8.8 mumol/L, respectively) and improved postischemic functional recovery in a glibenclamide (glyburide)-reversible manner. In addition, sodium 5-hydroxydecanoic acid completely abolished the protective effect of diazoxide. While-myocyte studies showed that diazoxide was significantly less potent than cromakalim in increasing sarcolemmal K+ currents. Diazoxide shortened ischemic action potential duration significantly less than cromakalim at equicardioprotective concentrations. We also determined the effects of cromakalim and diazoxide on reconstituted rat mitochondrial cardiac KATP activity. Cromakalim and diazoxide were both potent activators of K+ flux in this preparation (K1/2 values, 1.1 +/- 0.1 and 0.49 +/- 0.05 mumol/L, respectively). Both glibenclamide and sodium 5-hydroxydecanoic acid inhibited K+ flux through the diazoxide-opened mitochondrial KATP. The profile of activity of diazoxide (and perhaps KATP openers in general) suggests that they protect ischemic hearts in a manner that is consistent with an interaction with mitochondrial KATP.
Membrane depolarization causes voltage-gated ion channels to transition from a resting/closed conformation to an activated/open conformation. We used voltage-clamp fluorometry to measure protein motion at specific regions of the Shaker Kv channel. This enabled us to construct new structural models of the resting/closed and activated/open states based on the Kv1.2 crystal structure using the Rosetta-Membrane method and molecular dynamics simulations. Our models account for the measured gating charge displacement and suggest a molecular mechanism of activation in which the primary voltage sensors, S4s, rotate by approximately 180 degrees as they move "outward" by 6-8 A. A subsequent tilting motion of the S4s and the pore domain helices, S5s, of all four subunits induces a concerted movement of the channel's S4-S5 linkers and S6 helices, allowing ion conduction. Our models are compatible with a wide body of data and resolve apparent contradictions that previously led to several distinct models of voltage sensing.
Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures.
Voltage-dependent gating of ion channels is essential for electrical signaling in excitable cells, but the structural basis for voltage sensor function is unknown. We constructed high-resolution structural models of resting, intermediate, and activated states of the voltage-sensing domain of the bacterial sodium channel NaChBac using the Rosetta modeling method, crystal structures of related channels, and experimental data showing state-dependent interactions between the gating charge-carrying arginines in the S4 segment and negatively charged residues in neighboring transmembrane segments. The resulting structural models illustrate a network of ionic and hydrogen-bonding interactions that are made sequentially by the gating charges as they move out under the influence of the electric field. The S4 segment slides 6-8 Å outward through a narrow groove formed by the S1, S2, and S3 segments, rotates ∼30°, and tilts sideways at a pivot point formed by a highly conserved hydrophobic region near the middle of the voltage sensor. The S4 segment has a 3 10 -helical conformation in the narrow inner gating pore, which allows linear movement of the gating charges across the inner one-half of the membrane. Conformational changes of the intracellular one-half of S4 during activation are rigidly coupled to lateral movement of the S4-S5 linker, which could induce movement of the S5 and S6 segments and open the intracellular gate of the pore. We confirmed the validity of these structural models by comparing with a high-resolution structure of a NaChBac homolog and showing predicted molecular interactions of hydrophobic residues in the S4 segment in disulfide-locking studies.V oltage-gated sodium (Na V ) channels are responsible for initiation and propagation of action potentials in nerve, muscle, and endocrine cells (1, 2). They are members of the structurally homologous superfamily of voltage-gated ion channel proteins that also includes voltage-gated potassium (K V ), voltage-gated calcium (Ca V ), and cyclic nucleotide-gated (CNG) channels (3). Mammalian Na V and Ca V channels consist of four homologous domains (I through IV), each containing six transmembrane segments (S1 through S6) and a membrane-reentrant pore loop between the S5 and S6 segments (1, 3). Segments S1-S4 of the channel form the voltage-sensing domain (VSD), and segments S5 and S6 and the membrane-reentrant pore loop form the pore. The bacterial Na V channel NaChBac and its relatives consist of tetramers of four identical subunits, which closely resemble one domain of vertebrate Na V and Ca V channels, but provide much simpler structures for studying the mechanism of voltage sensing (4, 5). The hallmark feature of the voltage-gated ion channels is the steep voltage dependence of activation, which derives from the voltage-driven outward movement of gating charges in response to the membrane depolarization (6, 7). The S4 transmembrane segment in the VSD has four to seven arginine residues spaced at 3-aa intervals, which serve as gating charges in the voltage-s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.