We consider a Stokes problem posed on a 2D surface embedded in a 3D domain. The equations describe an equilibrium, area-preserving tangential flow of a viscous surface fluid and serve as a model problem in the dynamics of material interfaces. In this paper, we develop and analyze a Trace finite element method (TraceFEM) for such a surface Stokes problem. TraceFEM relies on finite element spaces defined on a fixed, surface-independent background mesh which consists of shape-regular tetrahedra. Thus, there is no need for surface parametrization or surface fitting with the mesh. The TraceFEM treated here is based on P 1 bulk finite elements for both the velocity and the pressure. In order to enforce the velocity vector field to be tangential to the surface we introduce a penalty term. The method is straightforward to implement and has an O(h 2 ) geometric consistency error, which is of the same order as the approximation error due to the P 1 -P 1 pair for velocity and pressure. We prove stability and optimal order discretization error bounds in the surface H 1 and L 2 norms. A series of numerical experiments is presented to illustrate certain features of the proposed TraceFEM.
The paper introduces a finite element method for the incompressible Navier-Stokes equations posed on a closed surface Γ ⊂ R 3 . The method needs a shape regular tetrahedra mesh in R 3 to discretize equations on the surface, which can cut through this mesh in a fairly arbitrary way. Stability and error analysis of the fully discrete (in space and in time) scheme is given. The tangentiality condition for the velocity field on Γ is enforced weakly by a penalty term. The paper studies both theoretically and numerically the dependence of the error on the penalty parameter.Several numerical examples demonstrate convergence and conservation properties of the finite element method.
Conservative and non-conservative phase-field models are considered for the numerical simulation of lateral phase separation and coarsening in biological membranes. An unfitted finite element method is devised for these models to allow for a flexible treatment of complex shapes in the absence of an explicit surface parametrization. For a set of biologically relevant shapes and parameter values, the paper compares the dynamic coarsening produced by conservative and non-conservative numerical models, its dependence on certain geometric characteristics and convergence to the final equilibrium.
The paper presents a model of lateral phase separation in a two component material surface. The resulting fourth order nonlinear PDE can be seen as a Cahn-Hilliard equation posed on a time-dependent surface. Only elementary tangential calculus and the embedding of the surface in R 3 are used to formulate the model, thereby facilitating the development of a fully Eulerian discretization method to solve the problem numerically. A hybrid method, finite difference in time and trace finite element in space, is introduced and stability of its semi-discrete version is proved. The method avoids any triangulation of the surface and uses a surface-independent background mesh to discretize the equation. Thus, the method is capable of solving the Cahn-Hilliard equation numerically on implicitly defined surfaces and surfaces undergoing strong deformations and topological transitions. We assess the approach on a set of test problems and apply it to model spinodal decomposition and pattern formation on colliding surfaces. Finally, we consider the phase separation on a sphere splitting into two droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.