The paper presents a new approach to the design of the classical PD controller for the plant in the closed loop control system. Proposed controller has two unknown adjustable parameters which are designed by the algebraic method in the two dimensional parameter space, by using the newly discovered characteristic polynomial of the row nondegenerate full transfer function matrix. The system relative stability, in regard to the chosen damping coefficient is achieved. The optimality criterion is the minimal value of the performance index and sum of squared error is taken as an objective function. The output error used in the performance index is influenced by all actions on the system at the same time: by nonzero initial conditions and by nonzero inputs. In the classical approach the output error is influenced only by nonzero inputs. Experimental results confirm that by taking into account nonzero initial conditions, an optimal solution is obtained, which is not the case with the classical method where optimization is performed at zero initial conditions.
Dynamic systems operate under the simultaneous influence of both the initial conditions and the input vector. There is neither physical nor mathematical justification for ignoring the initial conditions, e.g., in the control optimisation. This paper gives a response to the following question: Is a set of controller parameters which is optimal for the operation of a control system under zero initial conditions also optimal for its operation under non-zero initial conditions?The paper presents a new approach to the design of a classical proportional-differencesum (PDS) controller for a plant in a closed loop control system. The system relative stability with respect to a desired damping coefficient is accomplished. The minimal value of the performance index in the form of the sum of squared errors is the optimality criterion. Unlike the classical approach, the output error used in the performance index is influenced by all actions performed on the system at the same time.
Even though, it is mostly used by process control engineers, the temperature control remains an important task for researchers. This paper addressed two separate issues concerning model optimization and control. Firstly, the linear models for the three different operating points of the heat flow system were found. From these identified models a Takagi-Sugeno model is obtained using fixed membership functions in the premises of the rules. According to the chosen objective function, parameters in the premise part of Takagi-Sugeno fuzzy model were optimized using the grey wolf algorithm. Furthermore, by using the parallel distributed compensation a fuzzy controller is developed via the fuzzy blending of three proportional + sum controllers designed for each of the operating points. In order to evaluate performance, a comparison is made between the fuzzy controller and local linear controllers. Moreover, the fuzzy controllers from the optimized and initial Takagi-Sugeno plant models are compared. The experimental results on a heat flow platform are presented to validate efficiency of the proposed method.
The study proposes a novel method for synthesis of a discrete-time parallel distributed compensation (PDC) controller for the nonlinear discrete-time Takagi–Sugeno (TS) fuzzy plant model. For each of the fuzzy plant model linear subsystems, a local linear first order proportional-sum (PS) controller is designed. The algebraic technique is used in two-dimensional parameter space, utilizing the characteristic polynomial of the row nondegenerate full transfer function matrix. Each system’s relative stability is accomplished in relation to the selected damping coefficient. The supplementary criterion is the minimal value of the performance index in the form of the sum of squared errors (SSE). However, unlike the traditional technique, output error is impacted by all simultaneous actions on the system: nonzero inputs and nonzero initial conditions. The full transfer function matrix of the system allows for the treatment of simultaneous actions of the input vector and unknown unpredictable initial conditions. In order to show the improvement caused by the application of a new optimization method that considers nonzero initial conditions, a comparison of PDC controllers designed under zero and nonzero initial conditions is given, where the system in both cases starts from the same nonzero initial conditions, which is often the case in practice. The simulation and experimental results on a DC servo motor are shown to demonstrate the suggested method efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.