Hydraulic fracturing operations are performed to enhance well performance and to achieve economic success from improved production rates and the ultimate reserve recovery. To achieve these goals, fracturing fluid is pumped into the well at rates and pressures that result in the creation of a hydraulic fracture. Fracturing fluid selection presents the main requirement for the successful performance of hydraulic fracturing. The selected fracturing fluid should create a fracture with sufficient width and length for proppant placement and should carry the proppant from the surface to the created fracture. To accomplish all those demands, additives are added in fluids to adjust their properties. This paper describes the classification of fracturing fluids, additives for the adjustment of fluid properties and the requirements for fluid selection. Furthermore, laboratory tests of fracturing fluid, fracture stimulation design steps are presented in the paper, as well as a few examples of fracturing fluids used in Croatia with case studies and finally, hydraulic fracturing performance and post-frac well production results. The total gas production was increased by 43% and condensate production by 106% in selected wells including wellhead pressure, which allowed for a longer production well life.
In line with the low-carbon strategy, the EU is expected to be climate-neutral by 2050, which would require a significant increase in renewable energy production. Produced biogas is directly used to produce electricity and heat, or it can be upgraded to reach the “renewable natural gas”, i.e., biomethane. This paper reviews the applied production technology and current state of biogas and biomethane production in Europe. Germany, UK, Italy and France are the leaders in biogas production in Europe. Biogas from AD processes is most represented in total biogas production (84%). Germany is deserving for the majority (52%) of AD biogas in the EU, while landfill gas production is well represented in the UK (43%). Biogas from sewage sludge is poorly presented by less than 5% in total biogas quantities produced in the EU. Biomethane facilities will reach a production of 32 TWh in 2020 in Europe. There are currently 18 countries producing biomethane (Germany and France with highest share). Most of the European plants use agricultural substrate (28%), while the second position refers to energy crop feedstock (25%). Sewage sludge facilities participate with 14% in the EU, mostly applied in Sweden. Membrane separation is the most used upgrading technology, applied at around 35% of biomethane plants. High energy prices today, and even higher in the future, give space for the wider acceptance of biomethane use.
Pipeline spills and pollution of the environment by crude oil pose a threat to natural resources, especially soil and water. One such incident occurred on 25 September 2018 in the area of Budrovac (Croatia; 46°00′14.6″ N 17°04′16.8″ E) on agricultural land as a pipeline spill. Bioremediation of the contaminated soil was carried out with organic pollutants using an environmentally safe absorbent Spill-Sorb (Canadian Sphagnum Peat Moss) and a mineral fertilizer—nitrogen. The experiment was conducted in the greenhouse of the Faculty of Agriculture, Croatia, during a six-month (October 2018–April 2019) study. Samples of agricultural soils contaminated with total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) were taken after the rupture of the local gas condensate pipeline. The experiment was conducted in five treatments in triplicate: I-control (clean soil); II-100% contaminated soil + organic absorbent + nitrogen; III-100% contaminated soil + organic absorbent; IV-50% clean soil + 50% contaminated soil + organic absorbent + nitrogen; and V-50% clean soil + 50% contaminated soil + organic absorbent. The soil properties studied were pH, organic matter content, carbon and nitrogen content and ratio, and changes in the concentration of potential organic contaminants—TPHs and individual PAHs. The results demonstrated that the mixture of organic absorbent and nitrogen efficiently removed organic pollutants from the contaminated soil within six months. However, the application of Spill-Sorb alone was more effective for the degradation of hydrocarbons. The effectiveness of the absorbent studied was dependent on the concentration of organic pollutants and nitrogen application.
Industrial heritage plays an important role in the economical, historical, and cultural identity of contemporary European society. A significant part of the industrial heritage consists of historical buildings which have remained after mining and petroleum exploitation. Moreover, industrial heritage can be also nurtured in countries in which mining and petroleum activities are not fully developed. It is inevitably associated with geological heritage. Furthermore, geological heritage is essential for a better understanding of nature, its wider appreciation and better protection. Mining has always played a significant industrial role, but it has recently lost its significance due to increasing environmental requirements regarding the European green deal and transforming the economy for a sustainable future. However, old mining and petroleum heritage sites can become attractions and they can contribute to the development of tourism and the community itself. A new term “geotechnological heritage”, presented in this paper, is related to mining, geological and petroleum heritage due to their significant interaction. This paper presents the used and unused touristic potential of heritage on selected sites in the Republic of Croatia. In addition, an analysis of the Croatian undervalued geotechnological heritage has been performed after the exploitation of stone and other nonmetallics, coal, metals, and petroleum. Unlike Croatia, the potential of geotechnological heritage has been recognized and exploited in most European countries. Therefore, Croatia has a great opportunity to develop heritage based on the experience of more successful members of the European Union.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.