Advanced technologies of Sensorics and Internet of Things (IoT) enable real-time data analytics based on multiple sensors covering the target industrial production system and its manufacturing processes. The rolling bearings fault diagnosis is one of the most urgent problems and can be solved by using convolution neural networks and edge artificial intelligence (edge AI) devices. The limitations of the hardware platform must be taken into account to achieve maximum performance. In this paper, we analyze efficient CNN architecture for bearings fault diagnosis that is able to process data in real-time on edge AI devices. We observe that the accuracy of the proposed CNN is unsatisfactory for practical use, and better accuracy is possible with increasing the number of bearings in the training dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.