In this article, we present an adaptive color similarity function defined in a modified hue‐saturation‐intensity color space, which can be used directly as a metric to obtain pixel‐wise segmentation of color images among other applications. The color information of every pixel is integrated as a unit by an adaptive similarity function thus avoiding color information scattering. As a direct application we present an efficient interactive, supervised color segmentation method with linear complexity respect to the number of pixels of the input image. The process has three steps: (1) Manual selection of few pixels in a sample of the color to be segmented. (2) Automatic generation of the so called color similarity image (CSI), which is a gray level image with all the gray level tonalities associated with the selected color. (3) Automatic threshold of the CSI to obtain the final segmentation. The proposed technique is direct, simple and computationally inexpensive. The evaluation of the efficiency of the color segmentation method is presented showing good performance in all cases of study. A comparative study is made between the behavior of the proposed method and two comparable segmentation techniques in color images using (1) the Euclidean metric of the a* and b* color channels rejecting L* and (2) a probabilistic approach on a* and b* in the CIE L*a*b* color space. Our testing system can be used either to explore the behavior of a similarity function (or metric) in different color spaces or to explore different metrics (or similarity functions) in the same color space. It was obtained from the results that the color parameters a* and b* are not independent of the luminance parameter L* as one might initially assume in the CIE L*a*b* color space. We show that our solution improves the quality of the proposed color segmentation technique and its quick result is significant with respect to other solutions found in the literature. The method also gives a good performance in low chromaticity, gray level and low contrast images. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 156–172, 2017
In this paper a study of the influence of luminance L* at the CIE L* a* b* color space during color segmentation in highly saturated color images is presented. A comparative study is made between the behavior of segmentation in color images using (1) the Euclidean metric of the RGB channels (2) the Euclidean metric of a* and b* in CIE L*a*b* color space and (3) an adaptive color similarity function defined as a product of Gaussian functions in a modified HSI color space. For the evaluation, synthetic images were particularly designed to accurately assess the performance of the color segmentation. The testing system can be used either to explore the behavior of a similarity function (or metric) in different color spaces or to explore different metrics (or similarity functions) in the same color space. From the results it was obtained that the color parameters a* and b* are not independent of the luminance parameter L* as one might initially assume. In the majority of cases the CIE L*a*b color space was more influenced by the faded shadow than the RGB color space. The segmentation using the Euclidean metric in L*a*b* color space suffered errors in all cases. It manifested in different degrees and at different levels of faded shadow (less than 10% to 80%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.