The paper presents RuBQ, the first Russian knowledge base question answering (KBQA) dataset. The high-quality dataset consists of 1,500 Russian questions of varying complexity, their English machine translations, SPARQL queries to Wikidata, reference answers, as well as a Wikidata sample of triples containing entities with Russian labels. The dataset creation started with a large collection of question-answer pairs from online quizzes. The data underwent automatic filtering, crowdassisted entity linking, automatic generation of SPARQL queries, and their subsequent in-house verification. The freely available dataset will be of interest for a wide community of researchers and practitioners in the areas of Semantic Web, NLP, and IR, especially for those working on multilingual question answering. The proposed dataset generation pipeline proved to be efficient and can be employed in other data annotation projects.
На текущий момент вопросно-ответный поиск по базам знаний является активно развивающейся областью. Новые подходы демонстрируют стабильное повышение качества, однако такое развитие было бы невозможно без разработки наборов данных, позволяющих обучать модели, измерять их качество и ставить все более сложные задачи. К сожалению, все существующие наборы данных содержат вопросы только на английском языке, что ограничивает исследования в этой области для других языков. Мы хотим заполнить этот пробел, разработав набор данных для оценки методов вопросно-ответного поиска по базам знаний на русском языке. В данной работе описывается способ создания такого набора данных с помощью краудсорсинга , одним из ключевых этапов которого является выделение в текстах вопросов и ответов упоминаний сущностей и их сопоставление с сущностями базы знаний. Разработанный нами алгоритм позволяет строить списки таких возможных упоминаний и находить правильную сущность в 95% случаев. При этом алгоритм автоматически связывает фрагменты текста с сущностями базы знаний Wikidata . Полученные списки в дальнейшем будут использованы для получения разметки вопросов и ответов, необходимой для создания нового набора данных.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.