Electrons and photons are essential chemical "currencies" commonly traded in chemical transformations. The many applications of photon upconversion, i.e., conversion of low energy photons into high energy photons, raises the question about the possibility of "electron upconversion". In this review, we illustrate how reduction potential can be increased by using the free energy of exergonic chemical reactions. The electron (reductant) upconversion can produce up to ~20-25 kcal/mol of additional redox potential, creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems - dissociative (based on unimolecular fragmentations) and associative (based on bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage.
A stable (amino)plumbylene-substituted phosphaketene 3 was synthesized by the successive reactions of PbCl 2 with two anionic reagents (lithium amidophosphine and NaPCO). Of particular interest, the thermal evolution of 3, at 80 °C, leads to the transient formation of corresponding amino-and phosphanylidene-phosphaketenes (6 and 7), via a reductive elimination at the Pb II center forming new NÀ P and PÀ P bonds. Further evolution of 6 gives a new cyclic (amino)phosphanylidene phosphorane 4, which shows a unique reactivity as a phosphinidene. This result provides a new synthetic route to phosphinidenes, extending and facilitating further their access.
Die zahlreichen Anwendungen der Photonen‐Hochkonversion – d. h. der Umwandlung von Photonen mit niedriger Energie in Photonen mit hoher Energie – werfen die Frage nach der Möglichkeit einer “Elektronen‐Hochkonversion” auf. In diesem Aufsatz zeigen wir, wie das Reduktionspotential durch Nutzung der Gibbs‐Energie exergonischer chemischer Reaktionen gesteigert werden kann. Die Elektronen(Reduktionsmittel)‐Hochkonversion kann dabei bis zu 20–25 kcal mol−1 zusätzliches Redoxpotential erzeugen und somit unter milden Bedingungen starke Reduktionsmittel bereitstellen. Wir werden die beiden gebräuchlichen Arten Elektronen‐hochkonvertierender Systeme vorstellen: dissoziativ (basierend auf unimolekularen Fragmentierungen) und assoziativ (basierend auf der bimolekularen Bildung von Drei‐Elektronen‐Bindungen). Der mögliche Nutzen der Hochkonversion von Reduktionsmitteln umfasst Redoxkettenreaktionen in elektrokatalytischen Prozessen, Photoredoxkaskaden, das Design von Peroxid‐basierten Medikamenten, die Glühwürmchen‐Lumineszenz sowie die reduktive Reparatur von DNA‐Photoschäden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.