Extensive, but remote oil and gas fields of the United States, Canada, and Russia require the construction and operation of extremely long pipelines. Global warming and local heating effects lead to rising soil temperatures and thus a reduction in the sub-grade capacity of the soils; this causes changes in the spatial positions and forms of the pipelines, consequently increasing the number of accidents. Oil operators are compelled to monitor the soil temperature along the routes of the remoted pipelines in order to be able to perform remedial measures in time. They are therefore seeking methods for the analysis of volumetric diagnostic information. To forecast soil temperatures at the different depths we propose compiling a multidimensional dataset, defining descriptive statistics; selecting uncorrelated time series; generating synthetic features; robust scaling temperature series, tuning the additive regression model to forecast soil temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.