The article demonstrates a method for quantitative-qualitative geodiversity assessment based on core elements of abiotic nature (geology and geomorphology) according to a proposed weight multiplied by the area of spread through the studied region. The territory of the Coromandel Peninsula was selected as a case study due to its diverse geology and geomorphology. The north part of the Peninsula (Port Jackson, Fletcher Bay and Port Charles districts) was chosen because of the variety of rock types (sedimentary and volcanic groups) covering the region, while historical stratovolcano remnants and old sediments provide a good variety of meadow hills and weathered coastal cliffs. Meanwhile, the method utilizes easily accessible data (topographical and geological map) to assess slope angle (morphometry) and rock groups, including their age (geology) to identify areas in the sample region with significant geodiversity values. Moreover, the aim of this research is to make the assessment of geodiversity simpler and more accessible for various parts of the world with minimal required information. In this paper, we provide access to improve and utilize this method in geologically diverse territories to select the best areas for geotourism, geoeducation and geconservation planning.
The assessment of geodiversity is a relatively new field of research connecting abiotic aspects of nature to the wider environment. The study of geodiversity is still in development, so a uniform and complete paradigm remains to be defined. Therefore, an assessment of geodiversity may be highly dependent on the nature of the territory subject to study, available databases, and the researchers’ field of specialization. The main quantitative method for the assessment of geodiversity was proposed to the scientific world only few years ago and may only be relevant to some places in the world, rather than all, which would be desirable. However, while similarities in research methods may be apparent, the directions, scales, and data utilized are clearly different. This article demonstrates a quantitative-qualitative method for an assessment of geodiversity, based on a five-point evaluation system and the utilization of widely available standard databases such as geological maps, SRTM models, and satellite images. Western Samoa Islands (Savai’i and Upolu Islands) were selected for assessment, as a typical example of basaltic ocean island volcanism generating relatively homogenous rock formations and subject to gradual geomorphology (e.g., shield volcano). While initially appearing as a region of simple geology and morphology, complexity is added by considering rock ages, the position and type of eruptive centres, and the coastal geoenvironment. By considering these factors, the assessment becomes specifically tailoring for geodiversity assessment of the islands of Samoa. In conclusion, it has been demonstrated a simple methodology of general assessment of geodiversity with additional improvements to take account of variability in other abiotic factors.
Spatial scale in modeling is one of the most important aspects of any kind of assessment. This study utilized previously studied assessments of geodiversity through a qualitative–quantitative methodology for geosite recognition. Our methodology was developed based on geodiversity as a complex description of all elements of abiotic nature and processes, influencing it. Based on this definition, geodiversity can be divided into main elements: geology and geomorphology, creating a core of abiotic nature; and additional elements including hydrology, climate, and human influences. We include this description of geodiversity here to emphasize the data which were used in the assessment. The methodology was based on an evaluation system, subject to improvements informed by previous research, and map-based models showing the area of spreading of calculated elements. Except for additional changes in the assessment, this article primarily addresses the problem of scale, by comparing two different methods of scale in the research: grid and non-grid. Grid types of assessment are considered a widely useable method, requiring definitions of areas of research with a potential variety of polygons, and calculating elements inside the cell and applying values to each cell. In contrast, non-grid assessment utilizes the natural borders of all elements (e.g., map view pattern of geological formations), and including them in calculations. The union of layers from different elements creates shapes which highlight regions with the highest values. Hence, the goal of this article is to demonstrate differences between grid and non-grid assessments of geodiversity in Western Samoa. In our results, we compare the methods and emphasize specific tasks most suitable for each method.
Hydrology is one of the most influential elements of geodiversity, where geology and geomorphology stand as the main values of abiotic nature. Hydrological erosion created by river systems destructing rock formations (eluvial process) from streams’ sources and then transporting and redepositing (alluvial process) the rock debris into the main river channels, make it an ongoing transformation element of the abiotic environment along channel networks. Hence, this manuscript demonstrates the influence of hydrological elements on geosite recognition, specifically for qualitative–quantitative assessment of geodiversity, which is based on a combination of geological and geomorphological values. In this concept, a stream system will be treated as an additional element. The basement area of the Manawatu Region has been utilized as the territory for the research of hydrological assessment. The region is in the southern part of the North Island of New Zealand and has relatively low geological and geomorphological values and diversity. The Strahler order parameter will be demonstrated as a hydrological element for geodiversity assessment. This parameter has been chosen as one of the most common and acceptable within geographical information system (GIS) environments. The result of this assessment compares the influences of Strahler order on qualitative–quantitative assessment of geodiversity and provides its drawbacks. Additionally, the places with high values will be considered for more accurate field observation to be nominated as potential geosites with an opportunity for geoeducational and geotouristic significance.
In qualitative–quantitative assessment of geodiversity, geomorphology describes landscape forms suggesting specific locations as geosites. However, all digital elevation models (DEM) contain information only about altitude and coordinate systems, which are not enough data for inclusion assessments. To overcome this, researchers may transform altitude parameters into a range of different models such as slope, aspect, plan, and profile curvature. More complex models such as Geomorphon or Topographic Position Index (TPI) may be used to build visualizations of landscapes. All these models are rarely used together, but rather separately for specific purposes—for example, aspect may be used in soil science and agriculture, while slope is considered useful for geology and topography. Therefore, a qualitative–quantitative assessment of geodiversity has been developed to recognize possible geosite locations and simplify their search through field observation and further description. The Coromandel Peninsula have been chosen as an area of study due to landscape diversity formed by Miocene–Pleistocene volcanism which evolved on a basement of Jurassic Greywacke and has become surrounded and partially covered by Quaternary sediments. Hence, this research provides a comparison of six different models for geomorphological assessment. Models are based on DEM with surface irregularities in locations with distinct elevation differences, which can be considered geosites. These models have been separated according to their parameters of representations: numerical value and types of landscape. Numerical value (starting at 0, applied to the area of study) models are based on slope, ruggedness, roughness, and total curvature. Meanwhile, Geomorphon and TPI are landscape parameters, which define different types of relief ranging from stream valleys and hills to mountain ranges. However, using landscape parameters requires additional evaluation, unlike numerical value models. In conclusion, we describe six models used to calculate a range of values which can be used for geodiversity assessment, and to highlight potential geodiversity hotspots. Subsequently, all models are compared with each other to identify differences between them. Finally, we outline the advantages and shortcomings of the models for performing qualitative–quantitative assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.