Please check the manuscript for details of any other licences that may have been applied and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge. Take down policyIf you believe that this document breaches copyright please contact us providing details, any such items will be temporarily removed from the repository pending investigation.
Magnetic field is one of the key agents that play a crucial role in shaping molecular clouds and regulating star formation, yet the complete information on the magnetic field is not well constrained due to the limitations in observations. We study the magnetic field in the massive infrared dark cloud G035.39-00.33 from dust continuum polarization observations at 850 µm with SCUBA-2/POL-2 at JCMT for the first time. The magnetic field tends to be perpendicular to the densest part of the main filament (F M ), whereas it has a less defined relative orientation in the rest of the structure, where it tends to be parallel to some diffuse regions. A mean plane-of-the-sky magnetic field strength of ∼50 µG for F M is obtained using Davis-Chandrasekhar-Fermi method. Based on 13 CO (1-0) line observations, we suggest a formation scenario of F M due to large-scale (∼10 pc) cloud-cloud collision. Using additional NH 3 line data, we estimate that F M will be gravitationally unstable if it is only supported by thermal pressure and turbulence. The northern part of F M , however, can be stabilized by a modest additional support from the local magnetic field. The middle and southern parts of F M are likely unstable even if the magnetic field support is taken into account. We claim that the clumps in F M may be supported by turbulence and magnetic fields against gravitational collapse. Finally, we identified for the first time a massive (∼200 M ), collapsing starless clump candidate, "c8", in G035.39-00.33. The magnetic field surrounding "c8" is likely pinched, hinting at an accretion flow along the filament.
Aims. Infrared dark clouds represent the earliest stages of high-mass star formation. Detailed observations of their physical conditions on all physical scales are required to improve our understanding of their role in fueling star formation. Methods. We investigate the large-scale structure of the IRDC G035.39-00.33, probing the dense gas with the classical ammonia thermometer. This allows us to put reliable constraints on the temperature of the extended, pc-scale dense gas reservoir and to probe the magnitude of its non-thermal motions. Available far-infrared observations can be used in tandem with the observed ammonia emission to estimate the total gas mass contained in G035.39-00.33. Results. We identify a main velocity component as a prominent filament, manifested as an ammonia emission intensity ridge spanning more than 6 pc, consistent with the previous studies on the Northern part of the cloud. A number of additional line-of-sight components are found, and a large scale, linear velocity gradient of ∼0.2 km s −1 pc −1 is found along the ridge of the IRDC. In contrast to the dust temperature map, an ammonia-derived kinetic temperature map, presented for the entirety of the cloud, reveals local temperature enhancements towards the massive protostellar cores. We show that without properly accounting for the line of sight contamination, the dust temperature is 2-3 K larger than the gas temperature measured with NH 3 . Conclusions. While both the large scale kinematics and temperature structure are consistent with that of starless dark filaments, the kinetic gas temperature profile on smaller scales is suggestive of tracing the heating mechanism coincident with the locations of massive protostellar cores.
pyspeckit is a toolkit and library for spectroscopic analysis in Python. We describe the pyspeckit package and highlight some of its capabilities, such as interactively fitting a model to data, akin to the historically widely-used splot function in IRAF. pyspeckit employs the Levenberg–Marquardt optimization method via the mpfit and lmfit implementations, and important assumptions regarding error estimation are described here. Wrappers to use pymc and emcee as optimizers are provided. A parallelized wrapper to fit lines in spectral cubes is included. As part of the astropy affiliated package ecosystem, pyspeckit is open source and open development, and welcomes input and collaboration from the community.
High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH 3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s −1 ), and the sonic Mach number distribution peaks around M = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of M, further strengthening our findings of narrow line widths. This finding calls for a reevaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH 3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.