In our study, we investigated the chemical composition and cytotoxic activity of essential oils isolated from Dalmatian sage (Salvia officinalis L.) collected along the Adriatic coast of Croatia. Scanning electron microscopy (SEM) was used to examine the morphology of the stem and leaf surfaces. Essential oil excretory glands were detected on both the leaves and stem surfaces. The essential oils were isolated by hydrodistillation, and their chemical composition was determined by gas chromatography and mass spectrometry (GC-MS). Sage essential oils were mixtures of terpene compounds, among which the most common were: α- and β-thujone, camphor, and 1,8-cineol. Cytotoxic activity was tested using MTS assay on multiple cell lines: normal and immortalized fibroblasts (HF77FA and HDF-Tert), immortalized lung line (BEAS-2B), and breast adenocarcinoma (MDA-MB-231). The growth of treated cells was determined relative to control conditions without treatment. The immortalized lung line was the least resistant to the activity of the essential oils, whereas immortalized fibroblasts were the most resistant. Statistical analysis has connected the cytotoxic effect and chemical composition of the studied essential oils. To the best of our knowledge, this work is the first testing of the cytotoxic activity of S. officinalis EO’s on the BEAS-2B, HF77FA, and HDF-Tert cell lines. The presented data on essential oil chemical composition and cytotoxic effect on 4 types of human cells supports pharmacotherapeutic potential this plant is known to have.
Disabled-1 (Dab1) protein is an intracellular adaptor of reelin signaling required for prenatal neuronal migration, as well as postnatal neurotransmission, memory formation and synaptic plasticity. Yotari, an autosomal recessive mutant of the mouse Dab1 gene is recognizable by its premature death, unstable gait and tremor. Previous findings are mostly based on neuronal abnormalities caused by Dab1 deficiency, but the role of the reelin signaling pathway in nonneuronal tissues and organs has not been studied until recently. Hepatocytes, the most abundant cells in the liver, communicate via gap junctions (GJ) are composed of connexins. Cell communication disruption in yotari mice was examined by analyzing the expression of connexins (Cxs): Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 during liver development at 13.5 and 15.5 gestation days (E13.5 and E15.5). Analyses were performed using immunohistochemistry and fluorescent microscopy, followed by quantification of area percentage covered by positive signal. Data are expressed as a mean±SD and analyzed by one-way ANOVA. All Cxs examined displayed a significant decrease in yotari compared to wild type (wt) individuals at E13.5. Looking at E15.5 we have similar results with exception of Cx37 showing negligible expression in wt. Channels formation triggered by pathological stimuli, as well as propensity to apoptosis, was studied by measuring the expression of Pannexin1 (Panx1) and Apoptosis-inducing factor (AIF) through developmental stages mentioned above. An increase in Panx1 expression of E15.5 yotari mice, as well as a strong jump of AIF in both phases suggesting that yotari mice are more prone to apoptosis. Our results emphasize the importance of gap junction intercellular communication (GJIC) during liver development and their possible involvement in liver pathology and diagnostics where they can serve as potential biomarkers and drug targets.
We investigated DAB1-protein deficiency in the inner-ear development of yotari in comparison to humans and wild-type (wt) mice by immunofluorescence for the expression of connexins (Cxs) and the pannexin Panx1. The spatial and temporal dynamics of Cx26, Cx32, Cx37, Cx40, Cx43, Cx45, and Panx1 were determined in the sixth and eighth weeks of human development and at the corresponding mouse embryonic E13.5 and E15.5, in order to examine gap junction intercellular communication (GJIC) and hemichannel formation. The quantification of the area percentage covered by positive signal was performed for the epithelium and mesenchyme of the cochlear and semicircular ducts and is expressed as the mean ± SD. The data were analysed by one-way ANOVA. Almost all of the examined Cxs were significantly decreased in the cochlear and semicircular ducts of yotari compared to wt and humans, except for Cx32, which was significantly higher in yotari. Cx40 dominated in human inner-ear development, while yotari and wt had decreased expression. The Panx1 expression in yotari was significantly lower than that in the wt and human inner ear, except at E13.5 in the mesenchyme of the wt and epithelium and mesenchyme of humans. Our results emphasize the relevance of GJIC during the development of vestibular and cochlear functions, where they can serve as potential therapeutic targets in inner-ear impairments.
Helichrysum italicum (Roth) G. Don., immortelle, is a plant species used in ethnomedicine and the food industry as a spice added to food, beverages, and bakery products. It has been shown to possess various biological activities, such as antioxidant and antibacterial activity, making it useful as a natural preservative. We investigated the phytochemical profile and biological activity of H. italicum essential oils from wild-grown plant material collected from natural habitats in the Republic of Croatia and Bosnia and Herzegovina. Using high-resolution scanning electron microscopy (SEM), a visual investigation of plant organs (stem, leaf, and flower) was performed, confirming the presence of essential oil reservoirs on the surface of all examined plant organs. Essential oils were isolated by hydrodistillation in the Clevenger apparatus. The chemical composition of the essential oils was determined using the GC-MS analytical technique. Cytotoxic activity tests were performed in vitro on three cell lines: skin (fibroblast), lung, and breast cancer. Using statistical tools, the synergistic and selective effects of H. italicum essential oil on healthy and tumor cells were correlated to chemical composition and cytotoxic activity. The synergistic and antagonistic effects of H. italicum essential oil’s individual components were simulated by testing pure compounds and their mixture of cytotoxic activity on fibroblasts and breast cancer cells. The results confirm that essential oil’s biological activity is much greater than the sum of the effects of its components. The present data are novel contributions to the body of knowledge on the biological activity of this species used in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.