Although there is ample evidence that motor imagery activates similar cerebral regions to those solicited during actual movements, it is still unknown whether visual (VI) and kinesthetic imagery (KI) recruit comparable or distinct neural networks. The present study was thus designed to identify, through functional magnetic resonance imaging at 3.0 Tesla in 13 skilled imagers, the cerebral structures implicated in VI and KI. Participants were scanned in a perceptual control condition and while physically executing or focusing during motor imagery on either the visual or kinesthetic components of an explicitly known sequence of finger movements. Subjects' imagery abilities were assessed using well-established psychological, chronometric, and new physiological measures from the autonomic nervous system. Compared with the perceptual condition, physical executing, VI, and KI resulted in overlapping (albeit non-identical) brain activations, including motor-related regions and the inferior and superior parietal lobules. By contrast, a divergent pattern of increased activity was observed when VI and KI were compared directly: VI activated predominantly the occipital regions and the superior parietal lobules, whereas KI yielded more activity in motor-associated structures and the inferior parietal lobule. These results suggest that VI and KI are mediated through separate neural systems, which contribute differently during processes of motor learning and neurological rehabilitation.
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.