Sentiment classification is significant in everyday life of everyone, in political activities, activities of commodity production, commercial activities. In this research, we propose a new model for Big Data sentiment classification in the parallel network environment. Our new model uses STING Algorithm (SA) (in the data mining field) for English document-level sentiment classification with Hadoop Map (M)/Reduce (R) based on the 90,000 English sentences of the training data set in a Cloudera parallel network environment — a distributed system. In the world there is not any scientific study which is similar to this survey. Our new model can classify sentiment of millions of English documents with the shortest execution time in the parallel network environment. We test our new model on the 25,000 English documents of the testing data set and achieved on 61.2% accuracy. Our English training data set includes 45,000 positive English sentences and 45,000 negative English sentences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.