<p>This paper describes the design and the simulation of a non-linear controller for two-mass system using induction motor basing on the backstepping method. The aim is to control the speed actual value of load motor matching with the speed reference load motor, moreover, electrical drive’s respone ensuring the “fast, accurate and small overshoot” and reducing the resonance oscillations for two-mass system using induction motor fed by voltage source inveter with ideally control performance of stator current. Backstepping controller uses the non-linear equations of an induction motor and the linear dynamical equations of two-mass system, the Lyapunov analysis and the errors between the real and the desired values. The controller has been implemented in both simulation and hardware-in-the-loop (HIL) real-time experiments using Typhoon HIL 402 system, when the drive system operates at a stable speed (rotor flux is constant) and greater than rated speed (field weakening area). The simulation and HIL results presented the correctness and effectiveness of the controller is proposed; furthermore, compared to PI method to see the response of the system clearly.</p>
This study describes the direct torque control-DTC approach, based on the Sliding Mode Control (SMC) technology with chattering reduction, for reducing the torque ripple of the Switched Reluctance Motor (SRM). The SRM torque control loop has been given the SMC treatment to account for the low-frequency fluctuations in the torque output. To maintain a consistent motor speed, the sliding mode controller modifies the value of the reference current. The findings demonstrate that the constant sliding mode controller is superior to PI controllers at lowering the motor's torque ripple, compensating for its nonlinear torque characteristics, and rendering the drive insensitive to parameter changes. MATLAB/SIMULINK simulation has been used to show how well this SMC performs. The performance of the proposed SMC method has been demonstrated by simulation in MATLAB/SIMULINK with a three-phase 8/6 pole, and a 2kW SRM.
The structure and principle of the T-type 3-level reverse voltage source that will be fed to three-phase induction motors will be presented in this study. The implementation of Space Vector Pulse Width Modulation (SVPWM) and the math models of the induction motor, the stator currents, and the speed controller design of the electric traction drive system based on Field-Oriented Control (FOC) will be also shown. This three-level T-type inverter in the FOC structure decreases Total Harmonic Distortion (THD) more than the previous two-level inverters. By combining the FOC control structure with the T-type 3-level inverter, the speed and torque responses necessary for railway traction motor load were improved. Finally, Matlab/Simulink will be used to demonstrate the correctness of the T-Type multi-level inverter theory.
The stator current control loop plays an important role in ensuring the quality of electric drives interm of producing fast and adequate required torque. When the current controller provides ideal responses, speed control design subsequently is in charge of improving the system performances. Classical PID control is commonly used in current loop design, this paper presents the comparative analysis of current stator controller using proportional integral control and predictive current control (PCC) in field-oriented control-based induction motor drives, with rigidly coupled loads. The experimental results show system responses with PID and PCC. Informative experiment-based analysis provides primary guidance in selection between the two controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.