Despite the professional importance attached to the antenna theory and design course, most students and some academics still see the course as difficult and not easily explained via mathematical modelling (MM) despite some mathematical concepts integrated into the teaching and learning of an antenna theory and design. Due to this challenge, some students change their courses and opt for courses with less mathematical complexity. In view of this, this paper reports the review on the teaching and learning of an antenna theory and design using MM approach, relevant theoretical models reported by other researchers, with a comparative description of these theoretical frameworks. It also offers an empirical appraisal of a practical-realistic pedagogic mathematical model for teaching and learning an antenna theory and design course (PRPMM-TLATD) as a reliable model in the universities. In achieving this, data was gathered from four scholarly academics and 12 engineering students from a university in South Africa using qualitative approach. This finding generates the following stages as reported by the participants. And these stages include antenna validation by measurement, antenna validation by simulation, analysis of an antenna mathematically, personal conceptualization of the design work, total interpretation and validation of design problem, and problem resolution by mathematization. It also confirmed that the teaching and learning the design problem, antenna parameters modelling (mathematically), describing an antenna parameters mathematically, extra-mathematical working and prerequisite courses model were followed. The result of the study confirmed that the teaching and learning of an antenna theory and design could be classified into two domains, namely, paper-based design domain and a realistic domain as gathered from the data among engineering academics and students teaching and learning MM in a university in South Africa.
The limited knowledge of mathematical ideas and the high dropout rate of students in the schools of engineering throughout the country each year is alarming. One of the reasons attributed to this high failure rate is the students’ inability to integrate and apply the main mathematics constructs covered in the engineering courses. In this regard, this paper takes as its point of departure that the integration of mathematical concepts in engineering courses is unavoidable, particularly, in physical electronics. It gives credence to the objectives of engineering courses, that students should be able to interpret mathematics during design, apply appropriate technology to solve natural and man-made problems, evaluate engineering solutions, and appreciate a broad spectrum of knowledge. It thus argues for the use of a practical pedagogical multidisciplinary integrative model in the learning and teaching of engineering courses. The focus of the paper is on electronic engineering students’ knowledge of the mathematical ideas adopted and how the students blend and integrate advanced mathematics into their learning of physical electronics in a basic electronics course. The participants report that certain strategies are adopted when integrating mathematical concepts into the teaching and learning of physical electronics. These include Identification of the problem, selection of appropriate mathematical ideas, the analysis of the problem mathematics concepts, recognizing the degree of the mathematics concepts usage during integration, memorization method and the final result of interdisciplinary integration. This study was carried out using a qualitative approach of data collection in order to report a naturalistic view of the 15 electronics engineering students learning physical electronics as a course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.