We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.