In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be “home-compostable” to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level.
In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method “Design of Experiment” (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.
This study focused on material recycling of a biodegradable blend based on PLA and PHB for multiple applications of biodegradable polymeric material under real conditions. In this study, we investigated the effect of multiple processing of a biodegradable polymer blend under the trade name NONOILEN®, which was processed under laboratory as well as industrial conditions. In this article, we report on testing the effect of blending and multiple processing on thermomechanical stability, molecular characteristics, as well as thermophysical and mechanical properties of experimental- and industrial-type tested material suitable for FDM 3D technology. The results showed that the studied material degraded during blending and subsequently during multiple processing. Even after partial degradation, which was demonstrated by a decrease in average molecular weight and a decrease in complex viscosity in the process of multiple reprocessing, there was no significant change in the material’s thermophysical properties, either in laboratory or industrial conditions. There was also no negative impact on the strength characteristics of multiple processed samples. The results of this work show that a biodegradable polymer blend based on PLA and PHB is a suitable candidate for material recycling even in industrial processing conditions. In addition, the results suggest that the biodegradable polymeric material NONOILEN® 3D 3056-2 is suitable for multiple uses in FDM technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.