We derive a class of thermodynamically consistent variants of Maxwell/Oldroyd-B type models for viscoelastic fluids. In particular, we study the models that allow one to consider temperature dependent material coefficients. This naturally calls for the formulation of a temperature evolution equation that would accompany the evolution equations for the mechanical quantities. The evolution equation for the temperature is explicitly formulated, and it is shown to be consistent with the laws of thermodynamics and the evolution equations for the mechanical quantities. The temperature evolution equation contains terms that are ignored or even not thought of in most of the works dealing with this class of fluids. The impact of the additional terms in the temperature evolution equation on the flow dynamics is documented by the solution of simple initial/boundary value problems.
A continuum model for yttria-stabilized zirconia (YSZ) in the framework of non-equilibrium thermodynamics is developed. Particular attention is given to (i) modeling of the YSZ-metal-gas triple phase boundary, (ii) incorporation of the lattice structure and immobile oxide ions within the free energy model and (iii) surface reactions. A finite volume discretization method based on modified Scharfetter-Gummel fluxes is derived in order to perform numerical simulations. The model is used to study the impact of yttria and immobile oxide ions on the structure of the charged boundary layer and the double layer capacitance. Cyclic voltammograms of an air-half cell are simulated to study the effect of parameter variations on surface reactions, adsorption and anion diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.