The article summarizes the state of the art in carbon-reinforced geopolymers. It takes into consideration various types of matrices and types of carbon fibers (CFs). The article shows the growing importance of this composite in the investigation conducted in recent years. Today, it is one of the most promising modern research areas, taking into account the decrease in the prices of CFs and their appearance on the market waste-based CFs, as well as research on new methods of producing CFs from sustainable precursors. The research methods applied in the article are critical analyses of the literature. The results of the literature analysis are discussed in a comparative context, including production methods and the influence of CFs on geopolymer properties. The potential applications for carbon fiber-reinforced geopolymer composites are shown. Additionally, the current research challenges for geopolymer composites reinforced by CFs are presented.
The article presents preliminary results in studying reinforced and light-weight geopolymers, which can be employed in buildings, especially for walling. Such materials are very promising for the construction industry having great potential due to their favorable properties such as high mechanical strengths, low thermal conductivity, and low density. Moreover, they also exhibit several advantages from an economic and ecological point of view. The present study exanimated the use of specific fillers for the metakaolin-based light-weight geopolymers, emphasizing the above-mentioned physical properties. This research also investigated the electromagnetic shielding ability of the carbon grid built into the light-weight geopolymer structure. According to the study, the most suitable materials to be used as fillers are polystyrenes, along with hollow ceramic microsphere and Liapor. The polystyrene geopolymer (GPP) achieves five times lower thermal conductivity compared to cement concretes, which means five times lower heat loss by conduction. Furthermore, GPP is 28% lighter than the standard geopolymer composite. Although the achieved flexural strength of GPP is high enough, the compressive strength of GPP is only 12 MPa. This can be seen as a compromise of using polystyrene as a filler. At the same time, the results indicate that Liapor and hollow ceramic microsphere are also suitable fillers. They led to better mechanical strengths of geopolymer composites but also heavier and higher thermal conductivity compared to GPP. The results further show that the carbon grid not only enhances the mechanical performances of the geopolymer composites but also reduces the electromagnetic field. Carbon grids with grid sizes of 10 mm × 15 mm and 21 mm × 21 mm can reduce around 60% of the Wi-Fi emissions when 2 m away from the signal transmitter. Moreover, the Wi-Fi emission was blocked when the signal transmitter was at a distance of 6 m.
The production of conventional cement involves high energy consumption and the release of substantial amounts of carbon dioxide (CO2), exacerbating climate change. Additionally, the extraction of raw materials, such as limestone and clay, leads to habitat destruction and biodiversity loss. Geopolymer technology offers a promising alternative to conventional cement by utilizing industrial byproducts and significantly reducing carbon emissions. This paper analyzes the utilization of biomass fly ash (BFA) in the formation of geopolymer concrete and compares its carbon and cost impacts to those of conventional concrete. The previous analysis shows great potential for geopolymers to reduce the climate change impact of cement production. The results of this analysis indicate a significant disparity in the computed financial and sustainability costs associated with geopolymers. Researchers have shown that geopolymers may help mitigate the effects of cement manufacturing on the environment. These geopolymers are predicted to reduce green gas emissions by 40–80%. They also show that those advantages can be realized with the best possible feedstock source and the cheapest possible conveyance. Furthermore, our case study on CO2 emission and cost calculation for BFA-based geopolymer and conventional concrete shows that geopolymer concrete preparation emits 56% less CO2 than conventional concrete while costing 32.4% less per ton.
This paper deals with investigation of changes in geopolymer wettability with increasing mass fraction of high-carbon fly ash and surface treatment by cold atmospheric plasma (CAP). In this study, multiple samples of geopolymers were prepared, including those with 5% and 10% of high-carbon fly ash from coal-fired power station. Wettability of samples was then measured before and after plasma treatment, both on surface and cut surface. While addition of fly ash only had low effect on the wettability, as in most cases, it only lowered the initial contact angle without speeding up the speed of soaking for compact geopolymer and actually slowed the soaking for foamed geopolymer, plasma treatment had significant impact and made the geopolymer hydrophobic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.