Two soluble enzymes (FerA and FerB) catalyzing the reduction of a number of iron(III) complexes by NADH, were purified to near homogeneity from the aerobically grown iron‐limited culture of Paracoccus denitrificans using a combination of anion‐exchange chromatography (Sepharose Q), chromatofocusing (Mono P), and gel permeation chromatography (Superose 12). FerA is a monomer with a molecular mass of 19 kDa, whereas FerB exhibited a molecular mass of about 55 kDa and consists of probably two identical subunits. FerA can be classified as an NADH:flavin oxidoreductase with a sequential reaction mechanism. It requires the addition of FMN or riboflavin for activity on Fe(III) substrates. In these reactions, the apparent substrate specificity of FerA seems to stem exclusively from different chemical reactivities of Fe(III) compounds with the free reduced flavin produced by the enzyme. Observations on reducibility of Fe(III) chelated by vicinal dihydroxy ligands support the view that FerA takes part in releasing iron from the catechol type siderophores synthesized by P. denitrificans. Contrary to FerA, the purified FerB contains a noncovalently bound redox‐active FAD coenzyme, can utilize NADPH in place of NADH, does not reduce free FMN at an appreciable rate, and gives a ping‐pong type kinetic pattern with NADH and Fe(III)‐nitrilotriacetate as substrates. FerB is able to reduce chromate, in agreement with the fact that its N‐terminus bears a homology to the previously described chromate reductase from Pseudomonas putida. Besides this, it also readily reduces quinones like ubiquinone‐0 (Q0) or unsubstituted p‐benzoquinone.
FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.
The main aim of this work was to demonstrate the applicability of capillary zone electrophoresis in combination with field enhanced sample stacking in targeted metabolome analyses of adenine nucleotides--AMP, ADP, ATP, coenzymes NAD(+), NADP(+) and their reduced forms in Paracoccus denitrificans. Sodium carbonate/hydrogencarbonate buffer (100 mM, pH 9.6) with the addition of beta-CD at a concentration of 10 mM was found to be an effective BGE for their separation within 20 min. Besides this, special attention was paid to the development of the procedure for the extraction of specific metabolites from the bacterium P. denitrificans. This procedure was not only optimised to achieve the highest metabolite yields but also to obtain a sample that was fully compatible with the online preconcetration strategy used. The developed methodology was finally applied in a study of the bacterium P. denitrificans at various stages of the active respiratory chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.