Introduction: Hypokinetic dysarthria (HD) is a common symptom of Parkinson's disease (PD) which does not respond well to PD treatments. We investigated acute effects of repetitive transcranial magnetic stimulation (rTMS) of the motor and auditory feedback area on HD in PD using acoustic analysis of speech. Methods: We used 10 Hz and 1 Hz stimulation protocols and applied rTMS over the left orofacial primary motor area, the right superior temporal gyrus (STG), and over the vertex (a control stimulation site) in 16 PD patients with HD. A cross-over design was used. Stimulation sites and protocols were randomised across subjects and sessions. Acoustic analysis of a sentence reading task performed inside the MR scanner was used to evaluate rTMS-induced effects on motor speech. Acute fMRI changes due to rTMS were also analysed. Results: The 1 Hz STG stimulation produced significant increases of the relative standard deviation of the 2nd formant (p = 0.019), i.e. an acoustic parameter describing the tongue and jaw movements. The effects were superior to the control site stimulation and were accompanied by increased resting state functional connectivity between the stimulated region and the right parahippocampal gyrus. The rTMS-induced acoustic changes were correlated with the reading task-related BOLD signal increases of the stimulated area (R = 0.654, p = 0.029). Conclusion: Our results demonstrate for the first time that low-frequency stimulation of the temporal auditory feedback area may improve articulation in PD and enhance functional connectivity between the STG and the cortical region involved in an overt speech control.
Parkinson’s disease dysgraphia affects the majority of Parkinson’s disease (PD) patients and is the result of handwriting abnormalities mainly caused by motor dysfunctions. Several effective approaches to quantitative PD dysgraphia analysis, such as online handwriting processing, have been utilized. In this study, we aim to deeply explore the impact of advanced online handwriting parameterization based on fractional-order derivatives (FD) on the PD dysgraphia diagnosis and its monitoring. For this purpose, we used 33 PD patients and 36 healthy controls from the PaHaW (PD handwriting database). Partial correlation analysis (Spearman’s and Pearson’s) was performed to investigate the relationship between the newly designed features and patients’ clinical data. Next, the discrimination power of the FD features was evaluated by a binary classification analysis. Finally, regression models were trained to explore the new features’ ability to assess the progress and severity of PD. These results were compared to a baseline, which is based on conventional online handwriting features. In comparison with the conventional parameters, the FD handwriting features correlated more significantly with the patients’ clinical characteristics and provided a more accurate assessment of PD severity (error around 12%). On the other hand, the highest classification accuracy (ACC = 97.14%) was obtained by the conventional parameters. The results of this study suggest that utilization of FD in combination with properly selected tasks (continuous and/or repetitive, such as the Archimedean spiral) could improve computerized PD severity assessment.
Hypokinetic dysarthria (HD) and freezing of gait (FOG) are both axial symptoms that occur in patients with Parkinson’s disease (PD). It is assumed they have some common pathophysiological mechanisms and therefore that speech disorders in PD can predict FOG deficits within the horizon of some years. The aim of this study is to employ a complex quantitative analysis of the phonation, articulation and prosody in PD patients in order to identify the relationship between HD and FOG, and establish a mathematical model that would predict FOG deficits using acoustic analysis at baseline. We enrolled 75 PD patients who were assessed by 6 clinical scales including the Freezing of Gait Questionnaire (FOG–Q). We subsequently extracted 19 acoustic measures quantifying speech disorders in the fields of phonation, articulation and prosody. To identify the relationship between HD and FOG, we performed a partial correlation analysis. Finally, based on the selected acoustic measures, we trained regression models to predict the change in FOG during a 2-year follow-up. We identified significant correlations between FOG–Q scores and the acoustic measures based on formant frequencies (quantifying the movement of the tongue and jaw) and speech rate. Using the regression models, we were able to predict a change in particular FOG–Q scores with an error of between 7.4 and 17.0 %. This study is suggesting that FOG in patients with PD is mainly linked to improper articulation, a disturbed speech rate and to intelligibility. We have also proved that the acoustic analysis of HD at the baseline can be used as a predictor of the FOG deficit during 2 years of follow-up. This knowledge enables researchers to introduce new cognitive systems that predict gait difficulties in PD patients.
School-aged children spend 31-60 % of their time at school performing handwriting, which is a complex perceptual-motor skill composed of a coordinated combination of fine graphomotor movements. As up to 30 % of them experience graphomotor difficulties (GD), timely diagnosis of these difficulties and therapeutic intervention are of great importance. At present, an objective, computerized decision support system for the identification and assessment of GD in school-aged children is still missing. In this study, we propose three novel advanced handwriting parametrization techniques based on modulation spectra, fractional order derivatives, and tunable Q-factor wavelet transform to improve the identification of GD using online handwriting. For this purpose, we analyzed signals acquired from 7 basic graphomotor tasks performed by 53 children attending 3rd and 4th grade at several primary schools around the Czech Republic. Combining the newly proposed features with the conventionally used ones, we were able to identify GD with 84 % accuracy. In this study, we showed that using advanced parametrization of basic graphomotor movements can be potentially used to improve our capabilities of quantifying problems with the development of legible, fast-paced handwriting, and help with the early diagnosis of handwriting difficulties frequently manifested in developmental dysgraphia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.