ATTR amyloidosis is one of the worldwide most abundant forms of systemic amyloidosis. The disease is caused by the misfolding of transthyretin protein and the formation of amyloid deposits at different sites within the body. Here, we present a 2.97 Å cryo electron microscopy structure of a fibril purified from the tissue of a patient with hereditary Val30Met ATTR amyloidosis. The fibril consists of a single protofilament that is formed from an N-terminal and a C-terminal fragment of transthyretin. Our structure provides insights into the mechanism of misfolding and implies the formation of an early fibril state from unfolded transthyretin molecules, which upon proteolysis converts into mature ATTR amyloid fibrils.
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Plasticity of cells, tissues, and organs is controlled by the coordinated transcription of biological programs. However, the mechanisms orchestrating such context-specific transcriptional networks mediated by the dynamic interplay of transcription factors and coregulators are poorly understood. The peroxisome proliferator–activated receptor γ coactivator 1α (PGC-1α) is a prototypical master regulator of adaptive transcription in various cell types. We now uncovered a central function of the C-terminal domain of PGC-1α to bind RNAs and assemble multiprotein complexes including proteins that control gene transcription and RNA processing. These interactions are important for PGC-1α recruitment to chromatin in transcriptionally active liquid-like nuclear condensates. Notably, such a compartmentalization of active transcription mediated by liquid–liquid phase separation was observed in mouse and human skeletal muscle, revealing a mechanism by which PGC-1α regulates complex transcriptional networks. These findings provide a broad conceptual framework for context-dependent transcriptional control of phenotypic adaptations in metabolically active tissues.
Skeletal muscle has an enormous plastic potential to adapt to various external and internal perturbations. While morphological changes in endurance-trained muscles are well-described, the molecular underpinnings of training adaptation are poorly understood. We aimed at defining the molecular signature of a trained muscle and unraveling the training status-dependent responses to an acute bout of exercise. Our results reveal that even though at baseline, the transcriptomes of trained and untrained muscles are very similar, training status substantially affects the transcriptional response to an acute challenge, both quantitatively and qualitatively, in part mediated by epigenetic modifications. Second, proteomic changes were elicited by different transcriptional modalities. Finally, transiently activated factors such as the peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1alpha) are indispensable for normal training adaptation. Together, these results provide a molecular framework of the temporal and training status-dependent exercise response that defines muscle plasticity in training.
The peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α) integrates environmental cues by controlling complex transcriptional networks in various metabolically active tissues. However, it is unclear how a transcriptional coregulator coordinates dynamic biological programs in response to multifaceted stimuli such as endurance training or fasting. Here, we discovered a central function of the poorly understood C-terminal domain (CTD) of PGC-1α to bind RNAs and assemble multi-protein complexes. Surprisingly, in addition to controlling the coupling of transcription and processing of target genes, RNA binding is indispensable for the recruitment of PGC-1α to chromatin into liquid-like nuclear condensates, which compartmentalize and regulate active transcription. These results demonstrate a hitherto unsuspected molecular mechanism by which complexity in the regulation of large transcriptional networks by PGC-1α is achieved. These findings are not only essential for the basic understanding of transcriptional coregulator-driven control of biological programs, but will also help to devise new strategies to modulate these processes in pathological contexts in which PGC-1α function is dysregulated, such as type 2 diabetes, cardiovascular diseases or skeletal muscle wasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.