We derive the stress-energy tensor for polyharmonic maps between Riemannian manifolds. Moreover, we employ the stress-energy tensor to characterize polyharmonic maps where we pay special attention to triharmonic maps.
Motivated from the action functional for bosonic strings with extrinsic curvature term we introduce an action functional for maps between Riemannian manifolds that interpolates between the actions for harmonic and biharmonic maps. Critical points of this functional will be called interpolating sesqui-harmonic maps. In this article we initiate a rigorous mathematical treatment of this functional and study various basic aspects of its critical points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.