In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.