Fontan circulation leads to contractility-afterload mismatch by means of increased impedance caused by additional connection of the pulmonary vascular bed to the systemic vasculature and by means of deterioration of myocardial contractility. The increased ventriculoarterial coupling ratio and reduced mechanical efficiency predict limited cardiac functional reserve after the Fontan operation.
BD affects coronary circulation by two means: (1) impairment of CBF to decrease in parallel in afterload with consecutive hemodynamic deterioration and (2) severe endothelial dysfunction that may be a contributing factor to posttransplant outcome.
BD induction leads to an initial hyperdynamic reaction followed by hemodynamic instability. The facts that no cardiac dysfunction occurred if loading conditions were kept constant and the ventriculo--arterial coupling ratio and mechanical efficiency remained constant in the intact animal model indicate that decreased contractility reflects to decreased arterial elastance after brain death. Therefore, reduced contractile function after brain death at a decreased afterload may contribute to stroke work optimization.
The aim of this study was to determine the pathophysiological mechanisms of postcardiopulmonary bypass (CPB) intestinal dysfunction using an in vivo canine model of extracorporeal circulation. Six dogs underwent a 90 min hypothermic CPB with continuous monitoring of mean arterial blood pressure (MAP) and mesenteric blood flow (MBF). Reactive hyperemia and vasodilator responses of the superior mesenteric artery to acetylcholine and sodium nitroprusside were determined before and after CPB. Mesenteric lactate production, glucose consumption, creatine kinase (CK) release and venous free radicals were determined. CPB induced a significant fall (p < 0.05) in MAP and MBF. After CPB, reactive hyperemia (-26 +/- 15% versus -53 +/- 2%, p < 0.05) and the response to acetylcholine (-42 +/- 9 versus -55 +/- 6%, p < 0.05) were significantly decreased. Reperfusion increased lactate production (0.8 +/- 0.09 mmol/L versus 0.4 +/- 0.18, p < 0.05) and the CK release (446 +/- 98 U/L versus 5 +/- 19 U/L, p < 0.01). Endothelial dysfunction, conversion from aerobic to anaerobic metabolism, and intestinal cell necrosis seem to be responsible for intestinal complications associated with CPB.
Poly-ADP-ribose synthetase inhibition improves the recovery of myocardial and endothelial function after cardiopulmonary bypass with hypothermic cardiac arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.