a b s t r a c tLinear hyperbolic partial differential equations in a homogeneous medium, e.g., the wave equation describing the propagation and scattering of acoustic waves, can be reformulated as time-domain boundary integral equations. We propose an efficient implementation of a numerical discretization of such equations when the strong Huygens' principle does not hold.For the numerical discretization, we make use of convolution quadrature in time and standard Galerkin boundary element method in space. The quadrature in time results in a discrete convolution of weights W j with the boundary density evaluated at equally spaced time points. If the strong Huygens' principle holds, W j converge to 0 exponentially quickly for large enough j. If the strong Huygens' principle does not hold, e.g., in even space dimensions or when some damping is present, the weights are never zero, thereby presenting a difficulty for efficient numerical computation.In this paper we prove that the kernels of the convolution weights approximate in a certain sense the time domain fundamental solution and that the same holds if both are differentiated in space. The tails of the fundamental solution being very smooth, this implies that the tails of the weights are smooth and can efficiently be interpolated. Further, we hint on the possibility to apply the fast and oblivious convolution quadrature algorithm of Schädle et al. to further reduce memory requirements for long-time computation. We discuss the efficient implementation of the whole numerical scheme and present numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.