Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.
This study analyzed the ability of patients with Huntington's disease (HD) to modulate gait velocity without external sensory cues and in response to an auditory rhythmic cue within a frequency entrainment design. Uncued gait patterns of 27 patients were first assessed during normal, slower, and faster self‐paced walking. During rhythmic trials, metronome and musical beat patterns were delivered at rates 10% slower and 10–20% faster than baseline cadence to cue gait patterns. After the rhythmic trials, patients were retested at normal gait speed without rhythm. Gait velocities in the patients with HD were below normal reference values in all ranges. Patients were able to significantly (p <0.05) modulate their gait velocity during self‐paced and rhythmic metronome cueing but not during music. The ability to modulate gait velocity was retained regardless of the severity of the disease. Gait velocity declined with an increase in disability and chorea score. The disability score differentiated better between gait velocity of moderately and severe patients than chorea score. Slowness of gait was significantly correlated only with disability score and not with chorea. Patients had more difficulty producing adequate step rates than stride lengths during normal and fast walking speeds. After the rhythmic trials, unpaced gait velocity remained significantly (p <0.05) higher than baseline. This carry‐over effect was not seen after the uncued trials. Synchronization ability was deficient in all patients, deteriorated with severity of disease, and was already compromised in patients with soft disease signs. Rhythmic tracking of music declined more with severity of disease than metronome tracking. In summary, patients were able to modulate velocity with and without external cues. Velocity adaptations to the external rhythm in music and metronome were achieved without exact synchronization between step cadence and rhythmic stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.