Optical coherence tomography (OCT), a fairly new non-invasive optical real-time imaging modality, is an emergent in vivo technique, based on the interference (Michelson interferometry) of infrared radiation and living tissues, that allows high-resolution, 2- or 3-dimensional, cross-sectional visualisation of microstructural morphology of tissues. OCT provides depth-resolved images of tissues with resolution up to a few micrometers and depth up to several millimetres depending on tissue type. The investigations using OCT to assess skin structure in clinical settings started in the past decade and consequently proved that this imaging method is useful in visualizing subsurface structures of normal skin, including the epidermis, dermoepidermal junction, dermis, hair follicles, blood vessels and sweat ducts. An increasing number of papers brought evidence of the utility and the precision of OCT technology, in its different technical variants, in diagnosing and monitoring skin disorders, including malignancies and inflammatory conditions, respectively. The present comprehensive review describes and illustrates technical aspects and clinical applications of OCT methods in dermatology.
Spectroscopic analysis of biological tissues can provide insight into changes in structure and function due to disease or injury. Depth resolved spectroscopic measurements can be implemented for tissue imaging using optical coherence tomography (OCT). Here spectroscopic OCT is applied to in vivo measurement of burn injury in a mouse model. Data processing and analysis methods are compared for their accuracy. Overall accuracy in classifying burned tissue was found to be as high as 91%, producing an area under the curve of a receiver operator characteristic curve of 0.97. The origins of the spectral changes are identified by correlation with histopathology.
Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system's resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage.
Visualizing and assessing the function of microscopic retinal structures in the human eye is a challenging task that has been greatly facilitated by ophthalmic adaptive optics (AO). Yet, as AO imaging systems advance in functionality by employing multiple spectral channels and larger vergence ranges, achieving optimal resolution and signal-to-noise ratios (SNR) becomes difficult and is often compromised. While current-generation AO retinal imaging systems have demonstrated excellent, near diffraction-limited imaging performance over wide vergence and spectral ranges, a full theoretical and experimental analysis of an AOSLO that includes both the light delivery and collection optics has not been done, and neither has the effects of extending wavefront correction from one wavelength to imaging performance in different spectral channels. Here, we report a methodology and system design for simultaneously achieving diffraction-limited performance in both the illumination and collection paths for a wide-vergence, multi-spectral AO scanning laser ophthalmoscope (SLO) over a 1.2 diopter vergence range while correcting the wavefront in a separate wavelength. To validate the design, an AOSLO was constructed to have three imaging channels spanning different wavelength ranges (543 ± 11 nm, 680 ± 11 nm, and 840 ± 6 nm, respectively) and one near-infrared wavefront sensing channel (940 ± 5 nm). The AOSLO optics and their alignment were determined via simulations in optical and optomechanical design software and then experimentally verified by measuring the AOSLO's illumination and collection point spread functions (PSF) for each channel using a phase retrieval technique. The collection efficiency was then measured for each channel as a function of confocal pinhole size when imaging a model eye achieving near-theoretical performance. Imaging results from healthy human adult volunteers demonstrate the system's ability to resolve the foveal cone mosaic in all three imaging channels despite a wide spectral separation between the wavefront sensing and imaging channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.