Within the last 25 years an intensive agriculture has developed in the highland regions of Mato Grosso state (Brazil), which involves frequent pesticide use in highly mechanized cash-crop cultures. To provide information on pesticide distribution and dynamics in the northeastern Pantanal basin (located in southern Mato Grosso), we monitored 29 pesticides and 3 metabolites in surface water, sediment, and rainwater of the study area during the main application season. In environmental samples, 19 pesticides and 3 metabolites were detected in measurable quantities, resulting in at least one pesticide detection in 68% of surface water samples (n = 139), 62% of sediment samples (n = 26), and 87% of rainwater samples (n = 91). Surface water samples were most frequently contaminated by endosulfan compounds (alpha-, beta-, -sulfate), ametryn, metolachlor, and metribuzin, although in low (< 0.1 microgram L-1) concentrations. Sediment samples exhibited concentrations up to 4.5 micrograms kg-1 of p,p'-DDT, p,p'-DDE, endosulfan-sulfate, beta-endosulfan, and ametryn. In contrast, rainwater was polluted with substantial amounts of endosulfan, alachlor, metolachlor, trifluralin, monocrotofos, and profenofos (maximum concentrations = 0.3 to 2.3 micrograms L-1) in the highlands. Lowland rainwater samples taken 75 km from the next application area contained 5- to 10-fold lower mean pesticide concentration than in the highlands. Cumulative deposition rates of the pesticide sum within the study period ranged from 423 micrograms m-2 in the highlands to 14 micrograms m-2 in the lowlands. The atmospheric input of pesticides to ecosystems seemed to be of higher relevance in the tropical study area than known from temperate regions.
It is not the total but the (bio)accessible concentration of veterinary medicines that determines their toxicity in the environment. We elucidate the changes in (bio)accessibility of manure-applied sulfadiazine (SDZ) with increasing contact time in soil. Fattening pigs were medicated with 14C-labeled SDZ, and the contaminated manure (fresh and aged) was amended to 2 soil types (Cambisol, Luvisol) and incubated for 218 days at 10 degrees C in the dark. Antibiotic residues of different bioaccessibility were approached by sequential extractions with 0.01 M CaCl2 (CaCl2 fraction), methanol (MeOH fraction), and finally acetonitrile/water (residual fraction, microwave extraction at 150 degrees C). In each fraction, total radioactivity, SDZ, and its major metabolites were quantified. The results showed that both SDZ and,to a lesser extent 4-hydroxysulfadiazine (4-OH-SDZ) were rapidly reformed from N-acetylsulfadiazine (N-ac-SDZ) during the first 2-4 weeks after fresh manure application, i.e., the N-acetylated metabolite does not sequester in soil to a significant extent Yet, the water and methanol extractable SDZ and 4-OH-SDZ also dissipated rapidly (DT50 = 6.0-32 days) for the fresh manure treatment with similar rate constants for both soil types. In the residual fractions, however, the concentrations of both compounds increased with time. We conclude that the residual fraction comprises the sequestered pool of SDZ and its hydroxylated metabolite. There they are entrapped and may persist in soil for several years. Including the residual fraction into fate studies thus yields dissipation half-lives of SDZ which exceed those previously reported for sulfonamides by a factor of about 100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.