BACKGROUND:Sensitive, specific blood-based tests are difficult to develop unless steps are taken to maximize performance characteristics at every stage of marker discovery and development. We describe a sieving strategy for identifying high-performing marker assays that detect colorectal cancer (CRC)-specific methylated DNA in plasma.
Regulatory T-cells (Treg) have been the focus of immunologic research due to their role in establishing tolerance for harmless antigens versus allowing immune responses against foes. Increased Treg frequencies measured by mRNA expression or protein synthesis of the Treg marker FOXP3 were found in various cancers, indicating that dysregulation of Treg levels contributes to tumor establishment. Furthermore, they constitute a key target of immunomodulatory therapies in cancer as well as transplantation settings. One core obstacle for understanding the role of Treg, thus far, is the inability of FOXP3 mRNA or protein detection methods to differentiate between Treg and activated T cells. These difficulties are aggravated by the technical demands of sample logistics and processing. Based on Treg-specific DNA demethylation within the FOXP3 locus, we present a novel method for monitoring Treg in human peripheral blood and solid tissues. We found that Treg numbers are significantly increased in the peripheral blood of patients with interleukin 2-treated melanoma and in formalin-fixed tissue from patients with lung and colon carcinomas. Conversely, we show that immunosuppressive therapy including therapeutic antibodies leads to a significant reduction of Treg from the peripheral blood of transplantation patients. In addition, Treg numbers are predictively elevated in the peripheral blood of patients with various solid tumors. Although our data generally correspond to data obtained with gene expression and protein-based methods, the results are less fluctuating and more specific to Treg. The assay presented here measures Treg robustly in blood and solid tissues regardless of conservation levels, promising fast screening of Treg in various clinical settings. [Cancer Res 2009;69(2):599-608]
BackgroundColorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC.Methodology/Principal FindingsUsing a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was ∼20%.Conclusions/SignificanceAnalysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted.
BACKGROUND:Metabolomics is a valuable tool with applications in almost all life science areas. There is an increasing awareness of the essential need for high-quality biospecimens in studies applying omics technologies and biomarker research. Tools to detect effects of both blood and plasma processing are a key for assuring reproducible and credible results. We report on the response of the human plasma metabolome to common preanalytical variations in a comprehensive metabolomics analysis to reveal such high-quality markers.
BackgroundThis study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment.MethodsMarker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance.ResultsValid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]).ConclusionsHypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.