A pilot plant combining dissolved air flotation, anaerobic degradation in an expanded granular sludge bed (EGSB) reactor and aerobic post-treatment in a vertical flow constructed wetland has been used to treat tapioca starch wastewater for more than 2.25 years. It is demonstrated that organic matter (chemical oxygen demand by >98%), nitrogen (Kjeldahl-N by >90%) and cyanide (total cyanide by >99%) can be removed very efficiently under stable operating conditions. The removal efficiency for phosphorus is lower (total-P by 50%). The treatment concept, which includes several sustainable aspects, e.g. production of energy to be used on-site, low operation demands and minimal use of chemicals, could be interesting for small- and middle-sized tapioca processing plants.
Treatment of wastewater from a tannery in Greater Ho Chi Minh City (Vietnam) was investigated on a pilot scale. After pre-treatment by the tannery that included batch-coagulation and sedimentation, the wastewater was treated by dissolved air flotation, a membrane bioreactor (MBR) and granular activated carbon (GAC) for polishing the MBR effluent. The average removal efficiency for organic substances in the MBR was 81% while total nitrogen could only be removed by 36%. The performance of the GAC column could be successfully predicted using adsorption parameters determined in laboratory experiments. A larger proportion of the organics in the MBR effluent was only weakly adsorbable, therefore the usable carbon capacity was limited as confirmed by the modelling approach. The results were used to outline the size of a technical plant with a volumetric loading rate of 3 kg COD/(m 3 *d) for the MBR and a specific carbon demand of about 1.8 kg/m 3 .J. Fettig (corresponding author) V. Pick M. Oldenburg
A new decentralised settling system based on the principle of lamella separation was developed for the treatment of road runoff. Two different laboratory test methods, the DIBt (Deutsches Institut für Bautechnik) procedure and our own approach, were applied in order to evaluate the efficiency of the system based on the separation of fine mineral particles and a mixture of mineral and organic particles, respectively. Overall efficiencies (88% after DIBt and 61% according to our own method) were comparable to results obtained for commercial systems. The lamella system was then applied in the field for 1 year to treat runoff from a road area of 420 m. The amount of solids separated that was calculated from a mass balance (10.1 kg) was consistent with the amount of sediments measured (8.6 kg). However, the average separation efficiency was only 30% in the field study. This is related to the size and composition of the particles in runoff, which are not represented well by the material used for the test procedures. It is concluded that the test methods should be improved, and that more field studies are needed in order to obtain a better understanding of the settling behaviour of particles in road runoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.