Multi-robot systems are often static and pre-configured during the design time of their software. Emerging cooperation between unknown robots is still rare and limited. Such cooperation might be basic like sharing sensor data or complex like conjoined motion planning and acting. Robots should be able to detect other robots and their abilities during runtime. When cooperation seems to be possible and beneficial, it should be initiated autonomously. A centralized cloud control shall be avoided. Using software patterns belonging to service-oriented architectures, the robots are able to discover other robots and their abilities during runtime. These abilities are implemented as services and described by their interfaces. Composition of services can be done easily and flexibly. The software patterns originally belonging to cloud computing could be successfully adopted to decentralized multi-robot systems. The developed concept allows autonomous systems to cooperate flexibly and to compose multi-robot systems during runtime.
Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and compares existing algorithms for line fitting applicable also in case of strong covariances between the coordinates at each single data point, which must not be neglected if range-bearing sensors are used. Besides, particularly the determination of the covariance matrix is considered, which is required for stochastic modeling. The main contribution is a new error model of straight lines in closed form for calculating fast and reliably the covariance matrix dependent on just a few comprehensible and easily obtainable parameters. The model can be applied widely in any case when a line is fitted from a number of distinct points also without a-priori knowledge of the specific measurement noise. By means of extensive simulations the performance and robustness of the new model in comparison to existing approaches is shown.
Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and compares existing algorithms for line fitting applicable also in the case of strong covariances between the coordinates at each single data point, which must not be neglected if range-bearing sensors are used. Besides, in particular, the determination of the covariance matrix is considered, which is required for stochastic modeling. The main contribution is a new error model of straight lines in closed form for calculating quickly and reliably the covariance matrix dependent on just a few comprehensible and easily-obtainable parameters. The model can be applied widely in any case when a line is fitted from a number of distinct points also without a priori knowledge of the specific measurement noise. By means of extensive simulations, the performance and robustness of the new model in comparison to existing approaches is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.