Memory CD8 T cells can be divided into two subsets, central (T(CM)) and effector (T(EM)), but their lineage relationships and their ability to persist and confer protective immunity are not well understood. Our results show that T(CM) have a greater capacity than T(EM) to persist in vivo and are more efficient in mediating protective immunity because of their increased proliferative potential. We also demonstrate that, following antigen clearance, T(EM) convert to T(CM) and that the duration of this differentiation is programmed within the first week after immunization. We propose that T(CM) and T(EM) do not necessarily represent distinct subsets, but are part of a continuum in a linear naive --> effector --> T(EM) --> T(CM) differentiation pathway.
Microbial lung infections are the major cause of morbidity and mortality in the hereditary metabolic disorder cystic fibrosis, yet the molecular mechanisms leading from the mutation of cystic fibrosis transmembrane conductance regulator (CFTR) to lung infection are still unclear. Here, we show that ceramide age-dependently accumulates in the respiratory tract of uninfected Cftr-deficient mice owing to an alkalinization of intracellular vesicles in Cftr-deficient cells. This change in pH results in an imbalance between acid sphingomyelinase (Asm) cleavage of sphingomyelin to ceramide and acid ceramidase consumption of ceramide, resulting in the higher levels of ceramide. The accumulation of ceramide causes Cftr-deficient mice to suffer from constitutive age-dependent pulmonary inflammation, death of respiratory epithelial cells, deposits of DNA in bronchi and high susceptibility to severe Pseudomonas aeruginosa infections. Partial genetic deficiency of Asm in Cftr(-/-)Smpd1(+/-) mice or pharmacological treatment of Cftr-deficient mice with the Asm blocker amitriptyline normalizes pulmonary ceramide and prevents all pathological findings, including susceptibility to infection. These data suggest inhibition of Asm as a new treatment strategy for cystic fibrosis.-1 - infection. These data suggest inhibition of Asm as a novel treatment strategy in CF. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis-4 -
Cellular activation involves the re-organization of receptor molecules and the intracellular signalosom in the cell membrane. Recent studies indicate that specialized domains of the cell membrane, termed rafts, are central for the spatial organization of receptors and signaling molecules. Rafts are converted into larger membrane platforms by activity of the acid sphingomyelinase, which hydrolyses raft-sphingomyelin to ceramide. Ceramide molecules spontaneously associate to form ceramide-enriched microdomains, which fuse to large ceramide-enriched membrane platforms. The acid sphingomyelinase is activated by multiple stimuli including CD95, CD40, DR5/TRAIL, CD20, FcgammaRII, CD5, LFA-1, CD28, TNF, the Interleukin-1 receptor, the PAF-receptor, CD14, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, Rhinovirus, treatment with gamma-irradiation, UV-light, doxorubicin, cisplatin, disruption of integrin-signaling and under some conditions of developmental death. Ceramide-enriched membrane platforms serve the clustering of receptors, the recruitment of intracellular signaling molecules and the exclusion of inhibitory signaling factors and, thus, facilitate signal transduction initiated by the specific stimulus.
Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti–4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor–mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP–4-1BBL (RG7826) and CD19–4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen–mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP–4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer–bearing rhesus monkey. Combination of FAP–4-1BBL with tumor antigen–targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP– or CD19–4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+T cells. FAP– and CD19–4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.
The developmental pathways of long-lived memory CD8 T cells and the lineage relationship between memory T cell subsets remain controversial. Although some studies indicate the two major memory T cell subsets, central memory T (TCM) and effector memory T (TEM), are related lineages, others suggest that these subsets arise and are maintained independently of one another. In this study, we have investigated this issue and examined the differentiation of memory CD8 T cell subsets by tracking the lineage relationships of both endogenous and TCR transgenic CD8 T cell responses after acute infection. Our data indicate that TCR transgenic as well as nontransgenic TEM differentiate into TCM in the absence of Ag. Moreover, the rate of memory CD8 T cell differentiation from TEM into the self-renewing and long-lived pool of TCM is influenced by signals received during priming, including Ag levels, clonal competition, and/or the duration of infection. Although some TEM appear to not progress to TCM, the vast majority of TCM are derived from TEM. Thus, long-lasting, Ag-independent CD8 T cell memory results from progressive differentiation of memory CD8 T cells, and the rate of memory T cell differentiation is governed by events occurring early during T cell priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.