We study the relationship between memory accesses, bank conflicts, thread multiplicity (also known as over-subscription) and instruction-level parallelism in comparison-based sorting algorithms for Graphics Processing Units (GPUs). We experimentally validate a proposed formula that relates these parameters with asymptotic analysis of the number of memory accesses by an algorithm. Using this formula we analyze and compare several GPU sorting algorithms, identifying key performance bottlenecks in each one of them. Based on this analysis we propose a GPU-efficient multiway mergesort algorithm, GPU-MMS, which minimizes or eliminates these bottlenecks and balances various limiting factors for specific hardware.We realize an implementation of GPU-MMS and compare it to sorting algorithm implementations in state-of-the-art GPU libraries on three GPU architectures. Despite these library implementations being highly optimized, we find that GPU-MMS outperforms them by an average of 21% for random integer inputs and 14% for random key-value pairs.
In the field of online algorithms, paging is a well-studied problem. LRU is a simple paging algorithm that incurs few cache misses and supports efficient implementations. Algorithms outperforming LRU in terms of cache misses exist but are in general more complex and thus not automatically better, since their increased runtime might annihilate the gains in cache misses. In this article, we focus on efficient implementations for the ONOPT class described in Moruz and Negoescu [2012], particularly on an algorithm in this class, denoted RDM, that was shown to typically incur fewer misses than LRU. We provide experimental evidence on a wide range of cache traces showing that our implementation of RDM is competitive to LRU with respect to runtime. In a scenario incurring realistic time penalties for cache misses, we show that our implementation consistently outperforms LRU, even if the runtime of LRU is set to zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.